2015-2016学年湖南省张家界市高一(上)期末数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1.已知集合A={0,1,2},集合B={0,2,4},则A∩B=()A.{0,1,2}B.{0,2}C.{0,4}D.{0,2,4}2.对数型函数y=logax+1(a>0,且a≠1)的图象过定点()A.(0,0)B.(0,1)C.(1,2)D.(1,1)3.设函数f(x)满足f(x+2π)=f(x),f(0)=0,则f(4π)=()A.0B.πC.2πD.4π4.用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是()A.[2,2.5]B.[2.5,3]C.D.以上都不对5.某种计算机病毒是通过电子邮件进行传播的,表格是某公司前5天监测到的数据:第x天12345被感染的计算机数量y(台)12244995190则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是()A.y=12xB.y=6x2﹣6x+12C.y=6•2xD.y=12log2x+126.的值是()A.2B.1C.﹣2D.﹣17.已知=(1,2),=(﹣2,0),且k+与垂直,则k=()A.﹣1B.C.D.8.将函数f(x)=sin(2x﹣)的图象左移,再将图象上各点横坐标压缩到原来的,则所得到的图象的解析式为()A.y=sinxB.y=sin(4x+)C.y=sin(4x﹣)D.y=sin(x+)9.已知幂函数y=f(x)的图象经过点,且f(a+1)<f(10﹣2a),则实数a的取值范围是()A.(﹣1,5)B.(﹣∞,3)C.(3,+∞)D.(3,5)110.设函数f(x)定义在R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x﹣1,则有()A.B.C.D.11.设f(x)是定义在R上的奇函数,且f(x+3)•f(x)=﹣1,f(1)=﹣2,则f(2015)=()A.0B.0.5C.﹣2D.212.△ABC中三个内角为A、B、C,若关于x的方程x2﹣xcosAcosB﹣cos2=0有一根为1,则△ABC一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中对应题号后的横线上.13.sin420°=.14.函数的单调递增区间是.15.设向量,定义两个向量之间的运算“⊗”为,若向量,则向量=.16.设函数f(x)=2cos(ωx+φ)对任意的x都有,若设函数g(x)=3sin(ωx+φ)﹣1,则的值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁RA;(2)若C={x|x≤a},(∁RA)∩C=C,求实数a的取值范围.18.已知,.(1)求tanα的值;2(2)求的值.19.已知函数f(x)=.(1)求f(1),f[f(﹣2)]的值;(2)若f(a)=10,求实数a的值.20.已知向量与的夹角为30°,且=,=1.(1)求;(2)求的值;(3)如图,设向量,求向量在方向上的投影.21.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当,,若g(x)=1+2cos2x,求g(x0)的值;(3)若h(x)=1+2cos2x+a,且方程f(x)﹣h(x)=0在上有解,求实数a的取值范围.22.已知函数.(1)写出该函数的单调递减区间;(2)若函数g(x)=f(x)﹣m恰有1个零点,求实数m的取值范围;3(3)若不等式f(x)≤n2﹣2bn+1对所有x∈[﹣1,1],b∈[﹣1,1]恒成立,求实数n的取值范围.42015-2016学年湖南省张家界市高一(上)期末数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1.已知集合A={0,1,2},集合B={0,2,4},则A∩B=()A.{0,1,2}B.{0,2}C.{0,4}D.{0,2,4}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】利用交集定义求解.【解答】解: 集合集合A={0,1,2},集合B={0,2,4},∴A∩B={0,2}.故选:B.【点评】本题考查交集的求法,解题时要认真审题,是基础题.2.对数型函数y=logax+1(a>0,且a≠1)的图象过定点()A.(0,0)B.(0,1)C.(1,2)D.(1,1)【考点】对数函数的图象与性质.【专题】转化思想;演绎法;函数的性...