圆锥曲线中离心率及其范围的求解专题【高考要求】1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。2.掌握解析几何中有关离心率及其范围等问题的求解策略;3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。【热点透析】与圆锥曲线离心率及其范围有关的问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的离心率(a,b,c)适合的不等式(组),通过解不等式组得出离心率的变化范围;(3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化范围。(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于:①通过参数θ简明地表示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮助求解范围等问题;(6)构造一个二次方程,利用判别式0。2.解题时所使用的数学思想方法。(1)数形结合的思想方法。一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。(2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。(3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。(4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。【题型分析】1.已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为()A.B.C.D.解:由已知可得抛物线的准线为直线,∴方程为;由双曲线可知,∴,∴,∴,.2.椭圆()的两个焦点分别为、,以、为边作正三角形,若椭圆恰好平圆锥曲线的相关离心率问题共12页本页为第1页分三角形的另两边,则椭圆的离心率为(B)A.B.C.D.解析:设点为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得,所以由椭圆的定义及得:,故选B.变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率.3.(09浙江理)过双曲线22221(0,0)xyabab的右顶点A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为,BC.若12ABBC�,则双曲线的离心率是()A.2B.3C.5D.10【解析】对于,0Aa,则直线方程为0xya,直线与两渐近线的交点为B,C,22,,(,)aabaabBCabababab,22222222(,),,ababababBCABabababab�,因此222,4,5ABBCabe�.答案:C4.(09江西理)过椭圆22221xyab(0ab)的左焦点1F作x轴的垂线交椭圆于点P,2F为右焦点,若1260FPF,则椭圆的离心率为()A.22B.33C.12D.13【解析】因为2(,)bPca,再由1260FPF有232,baa从而可得33cea,故选B5.(08陕西理)双曲线22221xyab(0a,0b)的左、右焦点分别是12FF,,过1F作倾斜角为30的直线交双曲线右支于M点,若2MF垂直于x轴,则双曲线的离心率为(B)圆锥曲线的相关离心率问题共12页本页为第2页1F2FxOyPA.6B.3C.2D.336.(08浙江理)若双曲线12222byax的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(D)(A)3(B)5(C)3(D)57.(08全国一理)在ABC△中,ABBC,7cos18B.若以AB,为焦点的椭圆经过点C,则该椭圆的离心率e.388.(10辽宁文)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()(A)2(B)3(C)312(D)5...