圆锥曲线专题求离心率的值师生互动环节讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。策略一:根据定义式求离心率的值在椭圆或双曲线中,如果能求出ca、的值,可以直接代公式求离心率;如果不能得到的值,也可以通过整体法求离心率:椭圆中;双曲线中.所以只要求出值即可求离心率.例1.(2010年全国卷2)己知斜率为1的直线l与双曲线:2222100xyabab>,>相交于两点,且的中点为,求曲线C的离心率.解析:如图,设,则1221221byax①1222222byax②①-②整理得0))(())((2212122121byyyyaxxxx③又因为为的中点,则,且,代入③得,解得,所以.方法点拨:此题通过点差法建立了关于斜率与的关系,解得的值,从而整体代入求出离心率.当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得,或者,从而解出的值,最后求得离心率.【同类题型强化训练】1.(呼市二中模拟)已知中心在原点,焦点在轴上的双曲线的渐近线方程为,则双曲线的离心率为().2.(衡水中学模拟)已知中心在原点,焦点在轴上的一椭圆与圆交于两点,恰是该圆的直径,且直线的斜率,求椭圆的离心率.3.(母题)已知双曲线,双曲线上一动点到两条渐近线的距离乘积为求曲线的离心率.【强化训练答案】1.答案:由双曲线焦点在上,则渐近线方程,又题设条件中的渐近线方程为,比较可得,则.2.答案:设椭圆方程为,,则1221221byax①②①-②整理得③因为AB恰是该圆的直径,故的中点为圆心)1,2(,且21xx则2,42121yyxx,代入③式整理得2221212abxxyyk直线的斜率,所以,解得所以离心率.3.答案:曲线的渐近线方程分别为和0:2ymxl,设),(00yxP,则点到直线的距离,点到直线的距离,因为在曲线上,所以,故,解得所以.策略二:构造的关系式求离心率根据题设条件,借助之间的关系,沟通的关系(特别是齐次式),进而得到关于的一元方程,从而解方程得出离心率.例2.已知是双曲线的两焦点,以线段为边作正三角形,若边的中点在双曲线上,求双曲线的离心率.解析:如图1,的中点为,则点的横坐标为.由,焦半径公式有,即有解得,或(舍去).方法点拨:此题根据条件构造关于的齐次式,通过齐次式结合离心率的定义整理成关于的一元方程,从而解出离心率的值.注意解出的结果要做验证,取符合离心率的范围的结果:.【同类题型强化训练】1.(2011新课标)已知直线过双曲线的一个焦点,且与的对称轴垂直,与交于、两点,为的实轴长的2倍,则的离心率为()232.(2008浙江)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()35【同类题型强化训练答案】1.答案:依据题意,解得.2.答案:依据题意,整理得,所以.策略三:根据圆锥曲线的统一定义求离心率(第二定义)由圆锥曲线的第二定义,知离心率是动点到焦点的距离和动点到准线的距离之比,适用于条件含有焦半径的圆锥曲线问题,即.例3.(2010年辽宁卷)设椭圆的左焦点为,过点的直线与椭圆相交于两点,直线的倾斜角为,,求椭圆的离心率.解法一:作椭圆的左准线,过作的垂线,垂足为;过作的垂线,垂足为.过作的垂线,垂足为.如图2.由图,由椭圆的第二定义,则,且,所以是的中点又因为直线l的倾斜角为60,即,所以在中,,故.解法二:设1122(,),(,)AxyBxy,由题意知10y,20y.直线l的方程为3()yxc,其中.联立22223(),1yxcxyab得22224(3)2330abybcyb解得221222223(2)3(2),33bcabcayyabab因为2AFFB�,所以122yy.即2222223(2)3(2)233bcabcaabab得离心率23cea.方法点拨:该题对于课标地区选择第二种代数法处理,对于自主命题对圆锥曲线的第二定义要求的地区,两种方法都可以给学生讲讲。对于方法一:需要清晰的思路,敏捷的思维,对计算要求不高;对于方法二:对学生的计算能力有较高的要求,重在计算。【同类题型强化训练】1.(2010全国卷二)已知椭圆2222:1(0)xyCabab>>的离心率为32,过右焦点F且斜率为(0)kk>的直线与C相交于AB、两点.若3AFFB�,则().A1.B2.C3.D2...