一、选择题1.(2011·广东三校模拟)已知数列{an}是等差数列,且a1+a3+a5=2π,则cosa3=()A.B.-C.D.-2.已知等差数列{an}的前n项和为Sn,a4=15,S5=55,则过点P(3,a3),Q(10,a10)直线的斜率为()A.4B.-28C.-4D.-143.已知数列an=则a1+a2+a3+a4+…+a99+a100=()A.4800B.4900C.5000D.51004.已知等差数列{an}与{bn}的前n项和分别为Sn与Tn,且=,则等于()A.B.C.D.5.(2011·长沙模拟)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003·a2004<0,则使数列{an}的前n项和Sn>0成立的最大自然数n是()A.4005B.4006C.4007D.4008二、填空题6.设等差数列{an}的前n项和为Sn,若a6=S3=12,则{an}的通项公式an=________.7.等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=________.8.(2011·朝阳模拟)各项均不为零的等差数列{an}中,若a-an-1-an+1=0(n∈N*,n≥2),则S2012等于________.三、解答题9.在等差数列{an}中,已知a2+a7+a12=12,a2·a7·a12=28,求数列{an}的通项公式.10.已知数列{an}中a1=8,a4=2,且满足an+2+an=2an+1.(1)求数列{an}的通项公式;(2)设Sn是数列{|an|}的前n项和,求Sn.11.(2011·东城模拟)设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).(1)求证:数列{an}为等差数列,并写出an关于n的表达式;(2)若数列{}的前n项和为Tn,问满足Tn>的最小正整数n是多少?用心爱心专心1答案及解析1.【解】∵a1+a5=2a3,∴a1+a3+a5=3a3=2π,∴a3=π.∴cosa3=cosπ=-.【答案】D2.【解】∵S5==5a3=55,∴a3=11,∴公差d=a4-a3=15-11=4,∴直线PQ的斜率k==4.【答案】A3.【解】由题意得a1+a2+a3+a4+…+a99+a100=0+2+2+4+4+…+98+98+100=2(2+4+6+…+98)+100=2×+100=5000.【答案】C4.【解】====.【答案】B5.【解】由a1>0,a2003+a2004>0,a2003·a2004<0得{an}是递减的等差数列,∴a2003>0,a2004<0,又a2003+a2004=a1+a4006>0,a1+a4007=2a2004<0,∴S4006=>0,用心爱心专心2S4007=<0,∴最大自然数n是4006.【答案】B6.【解】由题意得解得∴an=a1+(n-1)d=2n.【答案】2n7.【解】∵6S5-5S3=5,∴6(5a1+10d)-5(3a1+3d)=5,∴a1+3d=,即a4=.【答案】8.【解】∵an-1+an+1=2an∴a-an-1-an+1=a-2an=0,解得an=2或an=0(舍).∴S2012=2×2012=4024.【答案】40249.【解】由a2+a7+a12=12得a7=4.又∵a2·a7·a12=28,∴(a7-5d)(a7+5d)·a7=28,∴d2=,∴d=或d=-.∴d=时,an=a7+(n-7)d=4+(n-7)×=n-;d=-时,an=a7+(n-7)d=4-(n-7)×=-n+.10.【解】(1)由2an+1=an+2+an可得{an}是等差数列,且公差d===-2.∴an=a1+(n-1)d=-2n+10.(2)令an≥0得n≤5.即当n≤5时,an≥0,n≥6时,an<0∴当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=-n2+9n当n≥6时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=-(a1+a2+…+an)+2(a1+a2+…+a5)=-(-n2+9n)+2×(-52+45)=n2-9n+40,11.【证明】(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),用心爱心专心3得an-an-1=2(n=2,3,4,…).所以数列{an}是以a1=1为首项,2为公差的等差数列.所以an=2n-1.(2)Tn=++…++=+++…+=[(-)+(-)+…+(-)]=(1-)=.由Tn=>,得n>,∴满足Tn>的最小正整数为12.用心爱心专心4