专题2.2函数的单调性与最值【考试要求】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值。2.理解函数的单调性、最大值、最小值的作用和实际意义.【知识梳理】1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【微点提醒】1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(或最小值).2.函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.3.“对勾函数”y=x+(a>0)的增区间为(-∞,-),(,+∞);单调减区间是[-,0),(0,].【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D上1是增函数.()(2)函数y=的单调递减区间是(-∞,0)∪(0,+∞).()(3)对于函数y=f(x),若f(1)f(1)B.f(m)0,所以m>1,所以f(m)>f(1).6.(2017·全国Ⅱ卷)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)【答案】D【解析】由x2-2x-8>0,得x>4或x<-2.设t=x2-2x-8,则y=lnt为增函数.要求函数f(x)的单调递增区间,即求函数t=x2-2x-8的单调递增区间. 函数t=x2-2x-8的单调递增区间为(4,+∞),∴函数f(x)的单调递增区间为(4,+∞).【考点聚焦】考点一确定函数的单调性(区间)【例1】(1)(2019·石家庄质检)若函数y=log(x2-ax+3a)在区间(2,+∞)上是减函数,则a的取值范围为()A.(-∞,-4)∪[2,+∞)B.(-4,4]C.[-4,4)D.[-4,4]【答案】D【解析】令t=x2-ax+3a,则y=logt(t>0),易知t=x2-ax+3a在上单调递减,在上单调递增. y=log(x2-ax+3a)在区间...