第1练集合与常用逻辑用语一、单选题1.设集合,,则下列结论正确的是()A.B.C.D.【答案】B【解析】,故选.2.设集合,集合,则等于()A.B.C.D.【答案】B【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.3.已知,命题p:,,则A.p是假命题,:,B.p是假命题,:,C.p是真命题,:,D.p是真命题,:,【答案】C【解析】【分析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果。【详解】,,当时,命题:,,是真命题命题:,,则故选【点睛】本题主要考查了命题的否定,特称命题与全称命题的否定关系,属于基础题。4.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【详解】当时,,满足,此时不存在,则充分性不成立;若,则,据此可得:,此时,满足,即必要性成立,综上可得:“”是“”的必要不充分条件.本题选择B选项.【点睛】本题主要考查三角函数的性质,充分条件与必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.5.已知为实数集,集合,,则韦恩图中阴影部分表示的集合为()A.B.C.D.【答案】D韦恩图中阴影部分表示的集合为,即.本题选择D选项.【点睛】本题主要考查集合的表示方法,集合的交并补运算,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.6.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.【答案】C【点睛】本题主要考查复合命题问题,与二次函数有关的命题,与指数函数有关命题的处理方法等知识,意在考查学生的转化能力和计算求解能力.7.已知非空集合满足,给出以下四个命题:①若任取,则是必然事件②若,则是不可能事件③若任取,则是随机事件④若,则是必然事件其中正确的个数是()A.B.C.D.【答案】C【解析】【分析】由集合的包含关系可得中的任何一个元素都是中的元素,中至少有一个元素不在中,结合必然事件、不可能事件和随机事件的概念,即可判断正确的个数【详解】非空集合、满足,可得中的任何一个元素都是中的元素,中至少有一个元素不在中,①若任取,则是必然事件,故①正确;②若,则是可能事件,故②不正确;③若任取,则是随机事件,故③正确;④若,则是必然事件,故④正确.其中正确的个数为3,故选C.【点睛】本题考查集合的包含关系,以及必然事件、不可能事件和随机事件的概念和判断,考查判断能力,属于基础题.8.已知集合,,则集合中元素的个数为A.2B.3C.4D.5【答案】C【点睛】本题主要考查了集合的交集,补集的混合运算,熟练掌握各自的定义是解题的关键,属于基础题。9.给出下列四个命题:①“若为的极值点,则=0”的逆命题为真命题;②“平面向量的夹角是钝角”的充分不必要条件是;③若命题p:,则;④命题“,使得”的否定是:“,均有”.其中不正确的个数是()A.3B.2C.1D.0【答案】A【解析】【分析】分别对①②③④进行真假判断,从而得到结论.【详解】“若x0为y=f(x)的极值点,则=0”的逆命题为:“若=0,则x0为y=f(x)的极值点”,为假命题,即①不正确;“平面向量的夹角是钝角”的必要不充分条件是,即②不正确;若命题p:,则,即③不正确;特称命题的否定为全称命题,即④正确.即不正确的个数是3.故选A.【点睛】本题考查了四种命题的关系,充分必要条件,以及命题的否定,属于中档题.10.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标“为真命题的充要条件是()A.(¬p)∨(¬q)为真命题B.p∨(¬q)为真命题C.(¬p)∧(¬q)为真命题D.p∨q为真命题【答案】A11.已知两个平面,,点,,命题:是命题:的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】由线面垂直可以推出线线垂直,即线面垂直...