电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习:函数的概念与性质VIP免费

高考数学总复习:函数的概念与性质_第1页
1/6
高考数学总复习:函数的概念与性质_第2页
2/6
高考数学总复习:函数的概念与性质_第3页
3/6
高考数学总复习:函数的概念与性质知识网络目标认知考试大纲要求:1.了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域和值域;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.4.理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.5.会运用函数图象理解和研究函数的性质.重点:会求一些简单函数的定义域和值域,理解分段函数及其简单应用,会运用函数图象理解和研究函数的性质。难点:分段函数及其简单应用;运用函数图象理解和研究函数的性质.知识要点梳理知识点一:函数的概念1.映射设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A、B及集合A到集合B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。理解:(1)映射是从集合A到集合B的“一对一”或“多对一”两种特殊的对应.(2)映射中的两个集合可以是数集,点集或其它集合.(3)集合A到集合B的映射f:A→B是一个整体,具有方向性;f:A→B与f:B→A一般情况下是不同的映射.(4)给定一个集合A到集合B的映射f:A→B,且a∈A,b∈B,如果在此映射之下元素a和元素b对应,则将元素b叫做元素a的象,元素a叫做元素b的原象.即如果在给定映射下有f:a→b,则b叫做a的象,a叫做b的原象.(5)映射允许集合B中的元素在集合A中没有原象.2.函数的定义(1)传统定义:设在某一变化过程中有两个变量x和y,如果对于某一范围内x的每一个值,y都有唯一的值和它对应,那么就说y是x的函数,x叫做自变量,y叫做因变量(函数).(2)现代定义:设A、B是两个非空数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合C={f(x)|x∈A}叫做函数的值域.理解:①集合A、B是两个非空数集;②f表示对应法则;③f:A→B为从集合A到集合B的一个映射;④值域CB。3.函数的表示函数关系可用列表法,图象法,解析法来表示.①解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.当对应法则可以用解析式表达时,一般用符号y=f(x)表示,此时解析式本身就是从定义域到值域的对应法则.②列表法:列出表格表示两个变量的函数关系的方法.运用列表法表示的,多是理论或实际生活中偏于实用的函数.③图象法:用函数图象表示两个变量之间函数关系的方法.图象法直现形象地表示出函数的变化情况,是数形结合的典范.只是它不能精确表示自变量与函数值之间的对应关系.4.函数的三要素函数的三要素是指函数的定义域、值域、对应法则.只有两个函数的定义域,值域,对应法则完全相同,它们才是同一函数.知识点二:函数的性质1.单调性(1)定义:设函数f(x)的定义域为I,区间DI.如果对任意,D,当<时,都有(或),则称f(x)是区间D上的增(减)函数.区间D称为f(x)的单调区间.如果函数f(x)在区间(a,b)上是增函数或是减函数,那么就称f(x)在区间(a,b)上具有单调性,称为单调函数。理解:①单调性立足于函数定义域的某一子区间.相对于整个定义域而言,单调性往往是函数的局部性质,而对于这一区间而言,单调性又是函数在这一区间上的“整体”性质.因此定义中的,具有任意性,不能以特殊值代替.②函数f(x)在区间D上递增(或递减),与f(x)图像在区间D上部分(从左向右)的上升(或下降)是一样的.③注意到定义均为充要性命题,因此,在函数的单调性之下,自变量的不等关系与相应函数值间的不等关系相互贯通:f(x)在D上为增函数且f()<f()<,且,D;f(x)在D上为减函数且f()<f()>,,D.(2)定义的应用单调性的定义,是判断,证明函数的单调性以及寻求函数单调区间的基本依据.应用函数的单调性定义的解题三部曲为:①设值定大小:设,为给定区间上任意两个自变量值,且<;②作差并变形:作差f()-f(),并将差式向着有利于判断差式符号的方向变形;③定号作结论:确定差值的符号,当符号不确定时考虑...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习:函数的概念与性质

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部