专题一~四规范滚动训练(四)(建议用时45分钟)1.在△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积为S=accosB.(1)求角B的大小;(2)若+=4,求sinAsinC的值.解:(1)在△ABC中,S=acsinB,由已知S=accosB可得acsinB=accosB,∴tanB=,又∵0<B<π,∴B=.(2)∵+===4,∵B=∴b2=3ac,由正弦定理可得sin2B=3sinAsinC,∵B=,∴sinAsinC=.2.已知等比数列{an}中,a1=a,a2=b,a3=c,a,b,c分别为△ABC的三个内角A,B,C的对边,且cosB=.(1)求数列{an}的公比q;(2)设集合A={x∈N|x2<2|x|},且a1∈A,求数列{an}的通项公式.解:(1)依题意知b2=ac,由余弦定理得cosB==×-=,而=q2,代入上式得q2=2或q2=,∵在三角形ABC中,a,b,c>0,∴q=或q=.(2)∵x2<2|x|,∴x4-4x2<0,即x2(x2-4)<0,∴-2