第五章5.4请同学们认真完成[练案22]A级基础巩固一、选择题1.某中学要在高一年级的二、三、四班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面向上记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班.按照这个规则,当选概率最大的是(B)A.二班B.三班C.四班D.三个班机会均等[解析]掷两枚硬币,共有4种结果:(2,2),(2,1),(1,2),(1,1),故选四班的概率是,选三班的概率为=,选二班的概率为,故选B.2.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类.在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了100箱小蜜蜂和1箱黑小蜜蜂,养蜂人乙在同一地区放养了1箱小蜜蜂和100箱黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理(B)A.甲B.乙C.甲和乙D.以上都对[解析]从养蜂人甲放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为,而从养蜂人乙放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为,所以,现在捕获的这只黑小蜜蜂是养蜂人乙放养的可能性较大.3.在所有的两位数10~99中,任取一个数,则这个数能被2或3整除的概率为(C)A.B.C.D.[解析]10~99中有90个两位数,这些两位数中,偶数有45个,10~99中有30个能被3整除的数,其中奇数有30÷2=15(个),所以所求的概率为=.4.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[100,120]内的学生人数为(B)A.36B.27C.22D.11[解析]由题意知,10×(0.015+a+0.030+a+0.010+0.005)=1,∴a=0.020.∴成绩在[100,120]内的学生人数为10×(0.030+0.020)×54=27,故选B.5.同时掷两颗骰子,得到点数和为6的概率是(B)A.B.C.D.[解析]列表可得所有可能情况是36种,而“点数和为6”,即(1,5),(5,1),(2,4),(4,2),(3,3),所以“点数和为6”的概率为.二、填空题6.某家具厂为足球比赛场馆生产观众座椅.质检人员对该厂所生产的2500套座椅进行抽检,共抽检了100套,发现有2套次品,则该厂所生产的2500套座椅中大约有__50__套次品.[解析]设有n套次品,由概率的统计定义,知=,解得n=50,所以该厂所生产的2500套座椅中大约有50套次品.7.小明和小展按如下规则做游戏:桌面上放有5支铅笔,每次取1支或2支,最后取完铅笔的人获胜,你认为这个游戏规则__不公平__(填“公平”或“不公平”).[解析]当第一个人第一次取2支时,还剩余3支,无论是第二个人取1支还是取2支,第一个人在第二次取铅笔时,都可取完,即第一个人一定能获胜,所以不公平.8.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为____.[解析]如图,在正六边形ABCDEF的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF,BCDE,ABCF,CDEF,ABCD,ADEF,共6种情况,故构成的四边形是梯形的概率P==.三、解答题9.为了调查某森林内松鼠的繁殖情况,可以使用以下方法:先从森林中捕捉松鼠100只,在每只松鼠的尾巴上作上记号,然后再把它们放回森林.经过半年后,再从森林中捕捉50只,假设尾巴上有记号的松鼠共有5只.试根据上述数据,估计此森林内松鼠的数量.[解析]设森林内的松鼠总数为n.假定每只松鼠被捕捉的可能性是相等的,从森林中任捕一只,设事件A={带有记号的松鼠},则由古典概型可知,P(A)=①,第二次从森林中捕捉50只,有记号的松鼠共有5只,即事件A发生的频数m=5,由概率的统计定义可知,P(A)≈=②,由①②可得:≈,所以n≈1000.所以,此森林内约有松鼠1000只.10.从一批苹果中,随机抽取50个作为样本,其重量(单位:克)的频数分布表如下:分组(重量)[80,85)[85,90)[90,95)[95,100]频率(个)5102015(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100]的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100]中各有1个的概率.[解析](1)苹果的重量在[90,95)的频率为0.4.(2)重量在[80,85)和[95,100]的苹果共有20个,从中...