电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习 第3章 三角函数、三角恒等变换及解三角形 第9课时 三角函数的综合应用课时训练(含解析)-人教版高三全册数学试题VIP免费

高考数学总复习 第3章 三角函数、三角恒等变换及解三角形 第9课时 三角函数的综合应用课时训练(含解析)-人教版高三全册数学试题_第1页
1/3
高考数学总复习 第3章 三角函数、三角恒等变换及解三角形 第9课时 三角函数的综合应用课时训练(含解析)-人教版高三全册数学试题_第2页
2/3
高考数学总复习 第3章 三角函数、三角恒等变换及解三角形 第9课时 三角函数的综合应用课时训练(含解析)-人教版高三全册数学试题_第3页
3/3
第三章三角函数、三角恒等变换及解三角形第9课时三角函数的综合应用1.若函数f(x)=cosωxcos(ω>0)的最小正周期为π,则ω=________.答案:1解析:由于f(x)=cosωxcos=sin2ωx,所以T==πω=1.2.在△ABC中,若∠B=,b=a,则∠C=________.答案:解析:根据正弦定理可得=,即=,解得sinA=.因为b=a>a,所以A0),f=f,且f(x)在区间有最小值,无最大值,则ω=________.答案:解析:由题意知直线x==为函数的一条对称轴,且ω×+=2kπ-(k∈Z),∴ω=8k-(k∈Z).①又-≤(ω>0),∴0<ω≤12.②由①②得k=1,∴ω=.8.已知函数f(x)=sin(2x+φ),其中φ为实数.f(x)≤对x∈R恒成立,且f>f(π),则f(x)的单调递增区间是________.答案:(k∈Z)解析:由x∈R,有f(x)≤知,当x=时f(x)取最值,∴f=sin=±1,∴+φ=±+2kπ(k∈Z),∴φ=+2kπ或φ=-+2kπ(k∈Z). f>f(π),∴sin(π+φ)>sin(2π+φ),∴-sinφ>sinφ,∴sinφ<0.∴φ取-+2kπ(k∈Z).不妨取φ=-,则f(x)=sin.令-+2kπ≤2x-≤+2kπ(k∈Z),∴+2kπ≤2x≤+2kπ(k∈Z),∴+kπ≤x≤+kπ(k∈Z).∴f(x)的单调递增区间为(k∈Z).9.在△ABC中,内角A、B、C所对的边长分别是a、b、c.(1)若c=2,C=,且△ABC的面积为,求a,b的值;(2)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.解:(1) c=2,C=,∴由余弦定理c2=a2+b2-2abcosC,得a2+b2-ab=4. △ABC的面积为,∴absinC=,ab=4.联立方程组解得a=2,b=2.(2)由sinC+sin(B-A)=sin2A,得sin(A+B)+sin(B-A)=2sinAcosA,即2sinBcosA=2sinAcosA,∴cosA·(sinA-sinB)=0,∴cosA=0或sinA-sinB=0,当cosA=0时, 0<A<π,∴A=,△ABC为直角三角形;当sinA-sinB=0时,得sinB=sinA,由正弦定理得a=b,即△ABC为等腰三角形.∴△ABC为等腰三角形或直角三角形.10.已知函数f(x)=sinωx·cosωx-cos2ωx+(ω∈R,x∈R)的最小正周期为π,且图象关于直线x=对称.(1)求f(x)的解析式;(2)若函数y=1-f(x)的图象与直线y=a在上只有一个交点,求实数a的取值范围.解:(1)f(x)=sinωx·cosωx-cos2ωx+=sin2ωx-(1+cos2ωx)+=sin+1. 函数f(x)的最小正周期为π,∴=π,即ω=±1,∴f(x)=sin+1.①当ω=1时,f(x)=sin+1,∴f=sin+1不是函数的最大值或最小值,∴其图象不关于x=对称,舍去.②当ω=-1时,f(x)=-sin+1,∴f=-sin+1=0是最小值,∴其图象关于x=对称.故f(x)的解析式为f(x)=1-sin.(2)y=1-f(x)=sin,在同一坐标系中作出y=sin和y=a的图象:由图可知,直线y=a在a∈或a=1时,两曲线只有一个交点,∴a∈或a=1.11.(2013·江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3mi...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习 第3章 三角函数、三角恒等变换及解三角形 第9课时 三角函数的综合应用课时训练(含解析)-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部