立体几何011.已知直线⊥平面α,直线平面β,给出下列命题:①α∥βl⊥m②α⊥βl∥m③l∥mα⊥β④l⊥mα∥β其中正确命题的序号是A.①②③B.②③④C.①③D.②④【答案】C【解析】当时,有,所以,所以①正确。若,则,又平面β,所以,所以③正确,②④不正确,所以选C.2.如图所示是以建筑物的三视图,现需将其外壁用油漆刷一遍,若每平方米用漆0.2kg,则共需油漆大约公斤数为(尺寸如图所示,单位:米π取3)A.20B.22.2C.111D.110【答案】B【解析】由三视图可知,该几何体上面是个圆锥,下面是个长方体。长方体的底面是边长为3的正方形,高为4,所以长方体的表面积(去掉上下两个底面)为。圆锥的底面半径为3,母线为5,所以圆锥的侧面积为,底面积(去掉一个正方形)为,所以该几何体的总面积为,所以共需油漆公斤,选B.3.已知一几何体的三视图如图4,主视图和左视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何形体可能是①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③每个面都是直角三角形的四面体.A.①②③B.②③C.①③D.①②【答案】A【解析】以长方体为几何体的直观图.当选择的四个点为B1、B、C、C1时,可知①正确;当选择B、A、B1、C时,可知②正确;当选择A、B、D、D1时,可知③正确.选A.4.一个四棱锥的三视图如图所示,其侧视图是等边三角形.该四棱锥的体积等于()A.B.2C.3D.6【答案】A【解析】由三视图可知,四棱锥的底面是俯视图对应的梯形,四棱锥的侧面是等边三角形且侧面和底面垂直,所以四棱锥的高为,底面梯形的面积为,所以四棱锥的体积为,选A.如图。5.一条长为2的线段,它的三个视图分别是长为的三条线段,则的最大值为A.B.C.D.3【答案】C【解析】构造一个长方体,让长为2的线段为体对角线,由题意知,即,又,所以,当且仅当时取等号,所以选C.6.如图2,正三棱柱的主视图(又称正视图)是边长为4的正方形,则此正三棱柱的侧视图(又称左视图)的面积为()图2主视图224C1B1A1CBAA.B.C.D.16【答案】A【解析】由主视图可知,三棱柱的高为4,底面边长为4,所以底面正三角形的高为,所以侧视图的面积为,选A.7.若是两个不同的平面,下列四个条件:①存在一条直线,;②存在一个平面,;③存在两条平行直线∥∥;④存在两条异面直线∥∥.那么可以是∥的充分条件有()A.4个B.3个C.2个D.1个【答案】C【解析】①可以;②也有可能相交,所以不正确;③也有可能相交,所以不正确;④根据异面直线的性质可知④可以,所以可以是∥的充分条件有2个,选C.8.若三棱锥的所有顶点都在球的球面上,⊥平面,,,,则球的表面积为()A.B.C.D.【答案】B【解析】因为,,,所以,所以。所以,即为直角三角形。因为三棱锥的所有顶点都在球的球面上,所以斜边AC的中点是截面小圆的圆心,即小圆的半径为.,因为是半径,所以三角形为等腰三角形,过作,则为中点,所以,所以半径,所以球的表面积为,选B.9.如图,E、F分别是三棱锥P-ABC的棱AP、BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为()A.90°B.60°C.45°D.30°【答案】B【解析】,取AC的中点M,连结EM,MF,因为E,F是中点,所以,,所以MF与ME所成的角即为AB与PC所成的角。在三角形MEF中,,所以,所以直线AB与PC所成的角为为,选B.10.设是两条直线,是两个平面,则的一个充分条件是()A.B.C.D.【答案】C【解析】若,,所以,又,所以,即,所以选C.11.已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为()A.B.C.D.【答案】A【解析】因为为边长为1的正三角形,且球半径为1,所以四面体为正四面体,所以的外接圆的半径为,所以点O到面的距离,所以三棱锥的高,所以三棱锥的体积为,选A.12.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为A.B.C.D.【答案】B【解析】根据三视图复原的几何体是底面为直角梯形,一条侧棱垂直直角梯形的直角顶点的四棱锥其中ABCD是直角梯形,AB⊥AD,AB=AD=2,BC=4,即PA⊥平面ABCD,PA=2。且,,,,,,底面梯形的面积为,,,,侧...