题组层级快练(七十二)1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.143种D.153种答案C解析可分三类:一类:语文、数学各1本,共有9×7=63种;二类:语文、英语各1本,共有9×5=45种;三类:数学、英语各1本,共有7×5=35种;∴共有63+45+35=143种不同选法.2.5名应届毕业生报考3所高校,每人报且仅报1所院校,则不同的报名方法的种数是()A.35B.53C.AD.C答案A解析第n名应届毕业生报考的方法有3种(n=1,2,3,4,5),根据分步计算原理,不同的报名方法共有3×3×3×3×3=35(种).3.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案D解析共有4×3×2×2=48(种),故选D.4.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种答案C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37种.5.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为()A.42B.30C.20D.12答案A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).6.(2014·沧州七校联考)已知如图的每个开关都有闭合、不闭合两种可能,因此5个开关共有25种可能,在这25种可能中,电路从P到Q接通的情况有()A.30种B.10种C.16种D.24种(提示:按有几个开关闭合分类)答案C解析5个开关闭合有1种接通方式;4个开关闭合有5种接通方式;3个开关闭合有8种接通方式;2个开关闭合有2种接通方式,故共有1+5+8+2=16种.7.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码,公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为()A.2000B.4096C.5904D.8320答案C解析若卡号后四位数没有4且没有7,这样的卡的个数为84=4096,∴优惠卡的个数为10000-4096=5904个,故选C.8.某大楼安装了5个彩灯,它们闪亮的顺序不固定,每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒答案C解析要实现所有不同的闪烁且需要的时间最少,只要所有闪烁连续地、不重复地依次闪烁一遍.而所有的闪烁共有A=120个;因为在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,即每个闪烁的时长为5秒,而相邻两个闪烁的时间间隔均为5秒,所以要实现所有不同的闪烁,需要的时间至少是120×(5+5)-5=1195秒.9.(2015·山东日照模拟)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为()A.6种B.12种C.18种D.24种答案A解析因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后之相邻的空格可填6,7,8任一个,余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.10.若从集合P到集合Q={a,b,c}所有的不同映射共有81个,则从集合Q到集合P所有的不同映射共有()A.32个B.27个C.81个D.64个答案D解析可设P集合中元素的个数为x,由映射的定义以及分步乘法计数原理,可得P→Q的映射种数为3x=81,可得x=4.反过来,可得Q→P的映射种数为43=64.11.(2015·江南十校)已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A,B共有()A.12对B.15对C.18对D.20对答案D解析依题意,当...