【高考领航】2016届高考数学二轮复习限时训练5函数与方程及函数的应用文(建议用时45分钟)1.已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.解:(1)g(x)=+2=|x|+2,因为|x|≥0,所以0<|x|≤1,即20时,由2x--2=0,整理得(2x)2-2·2x-1=0,(2x-1)2=2,故2x=1±,因为2x>0,所以2x=1+,即x=log2(1+).2.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为y=x2-50x+900,且每处理一吨废弃物可得价值10万元的某种产品,同时获得国家补贴10万元.(1)当x∈[10,15]时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?解:(1)根据题意得,利润P和处理量x之间的关系:P=(10+10)x-y=20x-x2+50x-900=-x2+70x-900=-(x-35)2+325,x∈[10,15].P=-(x-35)2+325,在[10,15]上为增函数,可求得P∈[-300,-75].∴国家最少补贴75万元,该工厂才不会亏损.(2)设平均处理成本为Q==x+-50≥2-50=10,当且仅当x=时等号成立,由x>0得x=30.因此,当处理量为30吨时,每吨的处理成本最少为10万元.3.如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.其炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.解:(1)令y=0,得kx-(1+k2)x2=0,由实际意义和题设条件知x>0,k>0,故x==≤=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka-(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正根⇔判别式Δ=(-20a)2-4a2(a2+64)≥0⇔a≤6.所以当a不超过6千米时,可击中目标.4.(2015·高考浙江卷)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.(1)证明:由f(x)=2+b-,得对称轴为直线x=-.由|a|≥2,得≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)解:由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3.由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.