【创新设计】(江苏专用)2016高考数学二轮复习专题一函数与导数、不等式考点整合理第1讲函数、函数与方程及函数的应用高考定位高考对本内容的考查主要有:(1)函数的概念和函数的基本性质是B级要求,是重要考点;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)函数与方程是B级要求,但经常与二次函数等基本函数的图象和性质综合起来考查,是重要考点;(4)函数模型及其应用是考查热点,要求是B级;试题类型可能是填空题,也可能在解答题中与函数性质、导数、不等式综合考查.INCLUDEPICTURE"真题感悟.tif"\*MERGEFORMAT真题感悟1.(2011·江苏卷)函数f(x)=log5(2x+1)的单调增区间是________.解析函数f(x)的定义域为,令t=2x+1(t>0).因为y=log5t在t∈(0,+∞)上为增函数,t=2x+1在上为增函数,所以函数y=log5(2x+1)的单调增区间为.答案2.(2012·江苏卷)设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b∈R.若f=f,则a+3b的值为________.解析因为函数f(x)是周期为2的函数,所以f(-1)=f(1)⇒-a+1=,又f=f=f⇒=-a+1,联立列成方程组解得a=2,b=-4,所以a+3b=2-12=-10.答案-103.(2014·江苏卷)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是________.解析作出函数y=f(x)与y=a的图象,根据图象交点个数得出a的取值范围.作出函数y=f(x)在[-3,4]上的图象,f(-3)=f(-2)=f(-1)=f(0)=f(1)=f(2)=f(3)=f(4)=,观察图象可得0<a<.答案4.(2015·江苏卷)已知函数f(x)=|lnx|,g(x)=则方程|f(x)+g(x)|=1实根的个数为________.解析令h(x)=f(x)+g(x),则h(x)=当1<x<2时,h′(x)=-2x+=<0,故当1<x<2时h(x)单调递减,在同一坐标系中画出y=|h(x)|和y=1的图象如图所示.1由图象可知|f(x)+g(x)|=1的实根个数为4.答案4考点整合1.函数的性质(1)单调性:证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.可以用来比较大小,求函数最值,解不等式,证明方程根的唯一性;(2)奇偶性:①若f(x)是偶函数,那么f(x)=f(-x);②若f(x)是奇函数,0在其定义域内,则f(0)=0;③奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;(3)周期性:①若y=f(x)对x∈R,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;②若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;③若y=f(x)是奇函数,其图象又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;④若f(x+a)=-f(x),则y=f(x)是周期为2|a|的周期函数.2.函数的图象对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.3.函数的零点与方程的根(1)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(2)零点存在性定理注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.4.应用函数模型解决实际问题的一般程序⇒⇒⇒与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.INCLUDEPICTURE"热点聚焦.tif"\*MERGEFORMAT热点一函数的性质及其应用【例1】(1)(2015·全国Ⅰ卷)若函数f(x)=xln(x+)为偶函数,则a=________.(2)设f(x)=(a∈R)的图象关于直线x=1对称,则a的值为________.(3)(2015·苏北四市模拟)设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且x∈时,f(x)=-x2,则f(3)+f的值等于________.2解析(1)f(x)为偶函数,则ln(x+)为奇函数,所以ln(x+)+ln(-x+)=0,即ln(a+x2-x2)=0,∴a=1.(2)由函数f(x)的图象...