2018高考数学异构异模复习考案第六章数列6.1.2数列的通项公式撬题理1.设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列前10项的和为________.答案解析由a1=1,且an+1-an=n+1(n∈N*)得,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+2+3+…+n=,则==2,故数列前10项的和S10=2=2=.2.已知数列{an}满足a1=1,an+1=3an+2,则数列{an}的通项公式为________.答案an=2·3n-1-1解析∵an+1=3an+2,∴an+1+1=3(an+1).∴=3,∴数列{an+1}是等比数列,公比q=3.又a1+1=2,∴an+1=2·3n-1,∴an=2·3n-1-1.3.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.答案an=解析当n=1时,a1=S1=-1;当n≥2时,an=Sn-Sn-1=2n-1,∴an=4.Sn为数列{an}的前n项和,已知an>0,a+2an=4Sn+3.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和.解(1)由a+2an=4Sn+3,可知a+2an+1=4Sn+1+3.可得a-a+2(an+1-an)=4an+1,即2(an+1+an)=a-a=(an+1+an)(an+1-an).由于an>0,可得an+1-an=2.又a+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{an}是首项为3,公差为2的等差数列,通项公式为an=2n+1.(2)由an=2n+1可知bn===.设数列{bn}的前n项和为Tn,则Tn=b1+b2+…+bn==.5.正项数列{an}的前n项和Sn满足:S-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.解(1)由S-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.由于{an}是正项数列,所以Sn>0,Sn=n2+n.于是a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.综上,数列{an}的通项公式为an=2n.(2)由于an=2n,故bn===.Tn=1-+-+-+…+-+-=1+--<×=.