专题21不等式选讲1.已知函数f(x)=|2x-1|+|x-2a|.(1)当a=1时,求f(x)≤3的解集;(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.2.已知函数f(x)=|2x+1|+|2x-3|.(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)<|a-1|的解集不是空集,求实数a的取值范围.【解析】(1)原不等式等价于,(2x+1)+(2x-3)≤6或,(2x+1)-(2x-3)≤6或,-(2x+1)-(2x-3)≤6,解得324,∴a<-3或a>5,∴实数a的取值范围为(-∞,-3)∪(5,+∞).3.已知函数f(x)=|x+3|-|x-2|.(1)求不等式f(x)≥3的解集;(2)若f(x)≥|a-4|有解,求a的取值范围.4.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:1b<14;(2)比较|1-4ab|与2|a-b|的大小,并说明理由.【解析】(1)证明:记f(x)=|x-1|-|x+2|=-2x-1,-2<x<1,-3,x≥1.由-2<-2x-1<0,解得-12<x<12,则M=12.所以1b≤13|a|+16|b|<13×12+16×12=14.(2)由(1)得a2<14,b2<14.因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=(4a2-1)(4b2-1)>0,所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.5.设函数f(x)=|x-3|-|x+1|,x∈R.(1)解不等式f(x)<-1;(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.(2)函数g(x)≤f(x)在x∈[-2,2]上恒成立,即|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,在同一个坐标系中画出函数f(x)和g(x)的图象,如图所示.故当x∈[-2,2]时,若0≤-a≤4,则函数g(x)的图象在函数f(x)的图象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].6.已知a>0,b>0,a+b=1,求证:(1)1a+1b+1ab≥8;(2)1a1b≥9.【解析】证明:(1) a+b=1,a>0,b>0,∴1a+1b+1ab=1a+1b+a+bab=21b=2a+bb=2ab+4≥4ab+4=8(当且仅当a=b=12时,等号成立),∴1a+1b+1ab≥8.(2) 1a1b=1a+1b+1ab+1,由(1)知1a+1b+1ab≥8.∴1a1b≥9.7.已知关于x的不等式m-|x-2|≥1,其解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.8.已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2;(2)1a+1b≥252.【解析】证明:(1)(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy,因为a+b=1,所以a-1=-b,b-1=-a.又a,b均为正数,所以a(a-1)x2+b(b-1)y2+2abxy=-ab(x2+y2-2xy)=-ab(x-y)2≤0,当且仅当x=y时等号成立.所以(ax+by)2≤ax2+by2.(2)1a+1b=4+a2+b2+1b2=4+a2+b2+(a+b)2a2+(a+b)2b2=4+a2+b2+1+2ba+b2a2+a2b2+2ab+1=4+(a2+b2)+2+2ab+a2b2≥4+(a+b)22+2+4+2=252.当且仅当a=b时等号成立.9.已知二次函数f(x)=x2+ax+b(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.(1)证明:|1+b|≤M;(2)证明:M≥12.10.已知a,b,c为非零实数,且a2+b2+c2+1-m=0,1a2+4b2+9c2+1-2m=0.(1)求证:1a2+4b2+9c2≥36a2+b2+c2;(2)求实数m的取值范围.【解析】(1)证明:由柯西不等式得32(a2+b2+c2)≥3·c,即32(a2+b2+c2)≥36.∴1a2+4b2+9c2≥36a2+b2+c2.(2)由已知得a2+b2+c2=m-1,1a2+4b2+9c2=2m-1,∴(m-1)(2m-1)≥36,即2m2-3m-35≥0,解得m≤-72或m≥5.又a2+b2+c2=m-1>0,1a2+4b2+9c2=2m-1>0,∴m≥5.即实数m的取值范围是[5,+∞).11.已知函数f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.(2)证明: x2+a2≥2ax,y2+b2≥2by,z2+c2≥2cz,三式相加,得x2+y2+z2+a2+b2+c2≥2ax+2by+2cz.由题设及(1),知x2+y2+z2=a2+b2+c2=m=1,∴2≥2(ax+by+cz),即ax+by+cz≤1,得证.12.已知函数f(x)=k-|x-3|,k∈R,且f(x+3)≥0的解集...