电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第八章 立体几何 课时跟踪训练41 空间几何体的表面积和体积 文-人教版高三全册数学试题VIP免费

高考数学一轮复习 第八章 立体几何 课时跟踪训练41 空间几何体的表面积和体积 文-人教版高三全册数学试题_第1页
1/9
高考数学一轮复习 第八章 立体几何 课时跟踪训练41 空间几何体的表面积和体积 文-人教版高三全册数学试题_第2页
2/9
高考数学一轮复习 第八章 立体几何 课时跟踪训练41 空间几何体的表面积和体积 文-人教版高三全册数学试题_第3页
3/9
课时跟踪训练(四十一)空间几何体的表面积和体积[基础巩固]一、选择题1.如图是一个几何体的正视图和侧视图,其俯视图是面积为8的矩形.则该几何体的表面积是()A.8B.20+8C.16D.24+8[解析]由题意可知,该几何体是底面为直角三角形的直三棱柱,其侧棱为4,故其表面积S表=2×4+2×4+2×4+×2×2×2=20+8.[答案]B2.已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为()A.B.C.D.[解析]VB1-ABC1=VC1-ABB1=××1×1×=.[答案]A3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()1A.14斛B.22斛C.36斛D.66斛[解析]米堆的体积为××π×2×5=.将π=3代入上式,得体积为立方尺.从而这堆米约有≈22(斛).[答案]B4.(2017·河北唐山二模)一个几何体的三视图如图所示,该几何体的表面积为()A.24-πB.24-3πC.24+πD.24-2π[解析]由三视图可知,该几何体是棱长为2的正方体挖去右下方球后得到的几何体,该球以顶点为球心,2为半径,则该几何体的表面积为2×2×6-3××π×22+×4×π×22=24-π,故选A.[答案]A5.(2017·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()2A.+1B.+3C.+1D.+3[解析]由几何体的三视图可得,该几何体是由半个圆锥和一个三棱锥组成的,故该几何体的体积V=×π×3+××2×1×3=+1,故选A.[答案]A6.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都是由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16[解析]由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为×2=12,故选B.[答案]B二、填空题7.(2017·天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.[解析]由正方体的表面积为18,得正方体的棱长为.设该正方体外接球的半径为R,则2R=3,R=,所以这个球的体积为R3=×=.[答案]8.下图是一个空间几何体的三视图,则该几何体的表面积是________.3[解析]该几何体是一个长方体挖去一半球而得,直观图如图所示,(半)球的半径为1,长方体的长、宽、高分别为2、2、1,∴该几何体的表面积为:S=16+×4π×12-π×12=16+π.[答案]16+π9.(2017·山东卷)由一个长方体和两个圆柱体构成的几何体的三视图如图所示,则该几何体的体积为________.[解析]由三视图可知,该组合体中的长方体的长、宽、高分别为2,1,1,其体积V1=2×1×1=2;两个圆柱合起来就是圆柱的一半,圆柱的底面半径r=1,高h=1,故其体积V2=×π×12×1=.故该几何体的体积V=V1+V2=2+.4[答案]2+三、解答题10.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.[解]由已知得:CE=2,DE=2,CB=5,S表面=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×2=(60+4)π,V=V圆台-V圆锥=(π·22+π·52+)×4-π×22×2=π.[能力提升]11.(2015·全国卷Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π[解析]如图,设点C到平面OAB的距离为h,球O的半径为R,因为∠AOB=90°,所以S△OAB=R2,要使VO-ABC=·S△OAB·h最大,则OA,OB,OC应两两垂直,且(VO-ABC)max=×R2×R=R3=36,此时R=6,所以球O的表面积为S...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第八章 立体几何 课时跟踪训练41 空间几何体的表面积和体积 文-人教版高三全册数学试题

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部