第一章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件教师用书理新人教版(建议用时:25分钟)一、选择题1.(2015·山东卷)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案D2.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.答案A3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析m⊂α,m∥βα∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.答案B4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sinx-+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析显然a=0时,f(x)=sinx-为奇函数;当f(x)为奇函数时,f(-x)+f(x)=0.又f(-x)+f(x)=sin(-x)-+a+sinx-+a=0.因此2a=0,故a=0.所以“a=0”是“函数f(x)为奇函数”的充要条件.答案C5.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-,不能推出m>0.所以不是真命题.答案C6.设x∈R,则“1”是“lna>lnb”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由lna>lnb⇒a>b>0⇒>,故必要性成立.当a=1,b=0时,满足>,但lnb无意义,所以lna>lnb不成立,故充分性不成立.答案B二、填空题9.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案210.“sinα=cosα”是“cos2α=0”的________条件.解析cos2α=0等价于cos2α-sin2α=0,即cosα=±sinα.由cosα=sinα得到cos2α=0;反之不成立.∴“sinα=cosα”是“cos2α=0”的充分不必要条件.答案充分不必要11.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.解析令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2