第10章概率、统计和统计案例章末总结知识点考纲展示随机事件的概率❶了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.❷了解两个互斥事件的概率加法公式.古典概型❶理解古典概型及其概率计算公式.❷会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.随机数与几何概型❶了解随机数的意义,能运用模拟方法估计概率.❷了解几何概型的意义.随机抽样❶理解随机抽样的必要性和重要性.❷会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法.用样本估计总体❶了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.❷理解样本数据标准差的意义和作用,会计算数据标准差.❸能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.❹会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.❺会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.统计案例❶会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.❷了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.❸通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.❹通过典型案例了解独立性检验(只要求2×2列联表)的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.一、点在纲上,源在本里考点考题考源样本估计总体的数字特征(2017·高考全国卷Ⅰ,T2,5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,xn的平均数B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值D.x1,x2,…,xn的中位数必修3P79练习T1用样本估计总计(2017·高考全国卷Ⅰ,T19,12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:必修3P79练习T21经计算得x=i=9.97,s==≈0.212,(xi-x)(i-8.5)=-2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(x-3s,x+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x-3s,x+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(xi,yi)(i=1,2,…,n)的相关系数r=.≈0.09.变量间的相关关系(2016·高考全国卷Ⅲ,T18,12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:iyi=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程y=a+bt中斜率和截距的最小二乘估计公式分别为:b=,a=y-bt.必修3P90例题、P95B组T1考点考题考源2样本估计总体与独立性检验思想(2017·高考全国卷Ⅱ,T19,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养...