第九节函数模型及其应用【最新考纲】1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.常见的几种函数模型(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=(k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=a·bx+c(b>0,b≠1,a≠0)型.(5)对数函数模型:y=mlogax+n(a>0,a≠1,m≠0)型.(6)幂函数模型:y=a·xn+b(a≠0)型.2.三种函数之间增长速度的比较1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=2x的函数值比y=x2的函数值大.()(2)幂函数增长比直线增长更快.()(3)不存在x0,使ax00),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象是()解析:注意到y为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.答案:D2.(2014·湖南卷)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C.D.-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p+1)(q+1).设这两年生产总值的年平均增长率为x,则(1+x)2=(p+1)(q+1),解得x=-1.答案:D3.某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪都比上一年增加20%,另外每年新招3名工人,每名新工人的第一年的年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,如果将第n年企业付给工人的工资总额y(万元)表示成n的函数,则其表达式为()A.y=(3n+5)1.2n+2.4B.y=8×1.2n+2.4nC.y=(3n+8)1.2n+2.4...