吉林省吉林市2015届高三上学期摸底数学试卷(文科)一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.1.(5分)计算:i(i+1)=()A.i+1B.i﹣1C.﹣i+1D.﹣i﹣12.(5分)若A={x|x≤1},B={x|x≥﹣1},则正确的是()A.A⊆BB.A∩B=∅C.(∁RA)∩B=BD.(∁RA)∪B=B3.(5分)已知条件p:x>1或x<﹣3,条件q:x>a,且q是p的充分而不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥﹣3D.a≤﹣34.(5分)某程序图如图所示,该程序运行后输出的结果是()A.3B.4C.5D.65.(5分)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为.则该几何体的俯视图可以是()A.B.C.D.16.(5分)将函数f(x)=2sin(+)的图象向左平移个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为()A.g(x)=2sin(+)﹣1B.g(x)=2sin(﹣)+1C.g(x)=2sin(﹣)+1D.g(x)=2sin(﹣)﹣17.(5分)已知曲线y=在点P(1,4)处的切线与直线l平行且距离为,则直线l的方程为()A.4x﹣y+9=0或4x﹣y+25=0B.4x﹣y+9=0C.4x+y+9=0或4x+y﹣25=0D.以上都不对8.(5分)已知,则的值为()A.﹣2B.﹣1C.1D.29.(5分)已知等差数列{an}的公差为2,若前17项和为S17=34,则a12的值为()A.8B.6C.4D.210.(5分)如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则等于()A.﹣1B.1C.﹣D.11.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.412.(5分)一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角保型函数”,给出下列函数:①f(x)=;②f(x)=x2;③f(x)=2x;④f(x)=lgx,2其中是“三角保型函数”的是()A.①②B.①③C.②③④D.③④二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知x,y满足不等式组,则目标函数z=2x+y的最大值为.14.(5分)已知直线l⊥平面α,直线m⊂平面β,则下列四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β其中正确命题的序号是.15.(5分)已知正项等比数列{an}的公比q=2,若存在两项am,an,使得=4a1,则+的最小值为.16.(5分)若动直线x=a与函数f(x)=sinxcosx和g(x)=cos2x的图象分别交于M,N两点,则|MN|的最大值为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{an}是公差大于零的等差数列,数列{bn}为等比数列,且a1=1,b1=2,b2﹣a2=1,a3+b3=13(Ⅰ)求数列{an}和{bn}的通项公式(Ⅱ)设cn=anbn+1,求数列{}前n项和Tn.18.(12分)已知△ABC中,a,b,c为角A,B,C所对的边,3bcosA=ccosA+acosC.(Ⅰ)求cosA的值;(Ⅱ)若△ABC的面积为2,a=3,求b,c的长.19.(12分)在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.3(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.20.(12分)如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.(1)求证:MN∥平面CDEF;(2)求多面体A﹣CDEF的体积.21.(12分)已知椭圆E:+=1(a>b>0)的离心率e=,并且经过定点P(,).(Ⅰ)求椭圆E的方程;(Ⅱ)问是否存在直线y=﹣x+m,使直线与椭圆交于A、B两点,满足•=,若存在求m值,若...