高考数学专题一第2讲知能演练轻松闯关训练题1.(2012·浙江嘉兴月考)如图为4个幂函数的图象,则图象与函数大致对应的是()A.①y=x,②y=x2,③y=x,④y=x-1B.①y=x3,②y=x2,③y=x,④y=x-1C.①y=x2,②y=x3,③y=x,④y=x-1D.①y=x,②y=x,③y=x2,④y=x-1解析:选B.可以根据图象对应寻求函数,故应选B.2.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x,x∈RB.y=log2|x|,x∈R且x≠0C.y=,x∈RD.y=x3+1,x∈R解析:选B.选项A中函数y=cos2x在区间上单调递减,不满足题意;选项C中的函数为奇函数;选项D中的函数为非奇非偶函数,故选B.3.(2012·大连调研)已知x=lnπ,y=log52,z=e,则()A.x<y<zB.z<x<yC.z<y<xD.y<z<x解析:选D. x=lnπ>lne,∴x>1. y=log52=,∴-1=h(-1),所以f(x)的“姊妹点对”有2个.答案:29.(2012·山东省潍坊市高考模拟)已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=-4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.以上命题中所有正确命题的序号为________.解析:令x=-2,得f(2)=f(-2)+f(2),又函数f(x)是偶函数,故f(2)=0;根据①可得f(x+4)=f(x),可得函数f(x)的周期是4,由于偶函数的图象关于y轴对称,故x=-4也是函数y=f(x)的图象的一条对称轴;根据函数的周期性可知,函数f(x)在[8,10]上单调递减,③不正确;由于函数f(x)的图象关于直线x=-4对称,故如果方程f(x)=m在区间[-6,-2]上的两根为x1,x2,则=-4,即x1+x2=-8.故正确命题的序号为①②④.答案:①②④10.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.解:(1) f(x)的图象与h(x)的图象关于点A(0,1)对称,设f(x)图象上任意一点坐标为B(x,y),其关于A(0,1)的对称点B′(x′,y′),则∴ B′(x′,y′)在h(x)上,∴y′=x′++2.∴2-y=-x-+2,∴y=x+,即f(x)=x+.(2)g(x)=x2+ax+1, g(x)在[0,2]上为减函数,∴-≥2,即a≤-4.∴a的取值范围为(-∞,-4].11...