电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第8章 平面解析几何 第9讲 直线与圆锥曲线的位置关系知能训练轻松闯关 理 北师大版-北师大版高三全册数学试题VIP免费

高考数学一轮复习 第8章 平面解析几何 第9讲 直线与圆锥曲线的位置关系知能训练轻松闯关 理 北师大版-北师大版高三全册数学试题_第1页
1/5
高考数学一轮复习 第8章 平面解析几何 第9讲 直线与圆锥曲线的位置关系知能训练轻松闯关 理 北师大版-北师大版高三全册数学试题_第2页
2/5
高考数学一轮复习 第8章 平面解析几何 第9讲 直线与圆锥曲线的位置关系知能训练轻松闯关 理 北师大版-北师大版高三全册数学试题_第3页
3/5
第9讲直线与圆锥曲线的位置关系1.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有()A.1条B.2条C.3条D.4条解析:选C.结合图形分析可知(图略),满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).2.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为()A.(1,)B.(1,]C.(,+∞)D.[,+∞)解析:选C.因为双曲线的一条渐近线方程为y=x,则由题意得>2,所以e==>=.3.双曲线C1的中心在原点,焦点在x轴上,若C1的一个焦点与抛物线C2:y2=12x的焦点重合,且抛物线C2的准线交双曲线C1所得的弦长为4,则双曲线C1的实轴长为()A.6B.2C.D.2解析:选D.设双曲线C1的方程为-=1(a>0,b>0).由题意可知抛物线C2的焦点为(3,0),准线方程为x=-3,即双曲线中c=3,a2+b2=9,将x=-3代入双曲线方程,解得y=±,又抛物线C2的准线交双曲线C1所得的弦长为4,所以2×=4,与a2+b2=9联立得,a2+2a-9=0,解得a=,故双曲线C1的实轴长为2,故选D.4.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点.设O为坐标原点,则OA·OB等于()A.-3B.-C.-或-3D.±解析:选B.依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,所以OA·OB=-,同理,直线l经过椭圆的左焦点时,也可得OA·OB=-.5.(2016·太原模拟)已知中心为原点,一个焦点为F(0,5)的椭圆,截直线y=3x-2所得弦中点的横坐标为,则该椭圆方程为()A.+=1B.+=1C.+=1D.+=1解析:选C.由已知得c=5,设椭圆的方程为+=1,联立得消去y得(10a2-450)x2-12(a2-50)x+4(a2-50)-a2(a2-50)=0,设直线y=3x-2与椭圆的交点坐标分别为(x1,y1),(x2,y2),由根与系数的关系得x1+x2=,由题意知x1+x2=1,即=1,解得a2=75,所以该椭圆方程为+=1,故选C.6.过抛物线y2=2px(p>0)的焦点F,斜率为的直线交抛物线于A,B两点,若AF=λFB(λ>1),则λ的值为()A.5B.4C.D.解析:选B.根据题意设A(x1,y1),B(x2,y2),由AF=λFB,得=λ,故-y1=λy2,即λ=.设1直线AB的方程为y=,联立直线与抛物线方程,消元得y2-py-p2=0.故y1+y2=p,y1·y2=-p2,=++2=-,即-λ-+2=-.又λ>1,故λ=4.7.(2016·宜宾模拟)已知椭圆+=1(a>b>0)的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为________.解析:由题意得|PF2|=,又|F1F2|=|PF2|,所以2c=,因为b2=a2-c2,所以c2+2ac-a2=0,所以e2+2e-1=0,解得e=-1±,又00)上异于坐标原点O的点,过点Q与抛物线C2:y=2x2相切的两...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第8章 平面解析几何 第9讲 直线与圆锥曲线的位置关系知能训练轻松闯关 理 北师大版-北师大版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部