课时跟踪训练(二十二)空间向量的数量积1.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量AB�与AC�的夹角为________.2.已知|a|=2,|b|=3,〈a,b〉=60°,则|2a-3b|=________.3.若AB�=(-4,6,-1),AC�=(4,3,-2),|a|=1,且a⊥AB�,a⊥AC�,则a=________________________________________________________________________.4.已知a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,则p·q=________.5.如图,120°的二面角的棱上有A,B两点,直线AC,BD分别在两个半平面内,且都垂直于AB.若AB=4,AC=6,BD=8,则CD的长为________.6.已知a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k的值;(2)若(ka+b)⊥(a-3b),求k的值.7.已知A(1,1,1),B(2,2,2),C(3,2,4),求△ABC的面积.8.在长方体OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,E是BC的中点.建立空间直角坐标系,用向量方法解决下列问题.(1)求直线AO1与B1E所成的角的余弦值;(2)作O1D⊥AC于D,求点O1到点D的距离.答案1.解析:AB�=(0,3,3),AC�=(-1,1,0),∴cos〈AB�,AC�〉==,∴〈AB�,AC�〉=60°.答案:60°2.解析:a·b=2×3×cos60°=3.∴|2a-3b|===.1答案:3.解析:设a=(x,y,z),由题意有代入坐标可解得:或答案:或4.解析:∵p=(1,1,0)-(0,1,1)=(1,0,-1),q=(1,1,0)+2(0,1,1)-(1,0,1)=(0,3,1),∴p·q=1×0+0×3+(-1)×1=-1.答案:-15.解析:∵AC⊥AB,BD⊥AB,∴AC�·AB�=0,BD�·AB�=0.又∵二面角为120°,∴〈CA�,BD�〉=60°,∴CD�2=|CD�|2=(CA�+AB�+BD�)2=CA�2+AB�2+BD�2+2(CA�·AB�+CA�·BD�+AB�·BD�)=164,∴|CD�|=2.答案:26.解:ka+b=(k-2,5k+3,-k+5),a-3b=(1+3×2,5-3×3,-1-3×5)=(7,-4,-16).(1)∵(ka+b)∥(a-3b),∴==,解得k=-.(2)∵(ka+b)⊥(a-3b),∴(k-2)×7+(5k+3)×(-4)+(-k+5)×(-16)=0.解得k=.7.解:∵AB�=(1,1,1),AC�=(2,1,3),∴|AB�|=,|AC�|=,AB�·AC�=6,∴cos∠BAC=cos〈AB�,AC�〉===,∴sin∠BAC===,∴S△ABC=|AB�||AC�|sin∠BAC=×××=.8.解:建立如图所示的空间直角坐标系.(1)由题意得A(2,0,0),O1(0,0,2),B1(2,3,2),E(1,3,0),∴1AO�=(-2,0,2),1BE�=(-1,0,-2),∴cos〈1AO�,1BE�〉==-.故AO1与B1E所成的角的余弦值为.(2)由题意得1OD�⊥AC�,AD�∥AC�,∵C(0,3,0),设D(x,y,0),∴1OD�=(x,y,-2),AD�=(x-2,y,0),AC�=(-2,3,0),∴解得∴D.O1D=|1OD�|===.23