第4讲直接证明与间接证明[基础题组练]1.(2020·衡阳示范高中联考(二))用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个是偶数”的正确假设为()A.自然数a,b,c中至少有两个偶数B.自然数a,b,c中至少有两个偶数或都是奇数C.自然数a,b,c都是奇数D.自然数a,b,c都是偶数解析:选B.“自然数a,b,c中恰有一个是偶数”说明有且只有一个是偶数,其否定是“自然数a,b,c均为奇数或自然数a,b,c中至少有两个偶数”.2.分析法又称执果索因法,已知x>0,用分析法证明<1+时,索的因是()A.x2>2B.x2>4C.x2>0D.x2>1解析:选C.因为x>0,所以要证<1+,只需证()2<,即证0<,即证x2>0,显然x2>0成立,故原不等式成立.3.在△ABC中,sinAsinC<cosAcosC,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选C.由sinAsinC<cosAcosC得cosAcosC-sinAsinC>0,即cos(A+C)>0,所以A+C是锐角,从而B>,故△ABC必是钝角三角形.4.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A,B,C的大小关系为()A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A解析:选A.因为≥≥,又f(x)=在R上是减函数,所以f≤f()≤f,即A≤B≤C.5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负1解析:选A.由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1+x2>0,可知x1>-x2,f(x1)1且+≥-2,则下列结论成立的是()A.a,b,c同号B.b,c同号,a与它们异号C.a,c同号,b与它们异号D.b,c同号,a与b,c的符号关系不确定解析:选A.由·>1知与同号,若>0且>0,不等式+≥-2显然成立,若<0且<0,则->0,->0,+≥2>2,即+<-2,这与+≥-2矛盾,故>0且>0,即a,b,c同号.2.(应用型)(一题多解)若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一点c,使f(c)>0,则实数p的取值范围是.解析:法一(补集法):f(x)在区间[-1,1]内至少存在一点c.使f(c)>0,该结论的否定是对于区间[-1,1]内的任意一点c,都有f(c)≤0,令解得p≤-3或p≥,故满足条件的p的取值范围为.法二(直接法):依题意有f(-1)>0或f(1)>0,即2p2-p-1<0或2p2+3p-9<0,3得-<p<1或-3<p<,故满足条件的p的取值范围是.答案:3.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不...