专题10数列、等差数列﹑等比数列1.在数列{an}中,已知a1+a2+…+an=2n-1,则a+a+…+a等于()A.(2n-1)2B.C.4n-1D.2.已知等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,则=()A.1+B.1-C.3+2D.3-2解析: a1,a3,2a2成等差数列,∴a3×2=a1+2a2,即a1q2=a1+2a1q,∴q2=1+2q,解得q=1+或q=1-(舍),∴==q2=(1+)2=3+2.答案:C3.设等比数列{an}的前6项和S6=6,且1-为a1,a3的等差中项,则a7+a8+a9=()A.-2B.8C.10D.14解析:依题意得a1+a3=2-a2,即S3=a1+a2+a3=2,数列S3,S6-S3,S9-S6成等比数列,即数列2,4,S9-6成等比数列,于是有S9-S6=8,即a7+a8+a9=8,选B.答案:B4.已知数列{an}的首项a1=2,数列{bn}为等比数列,且bn=,若b10b11=2,则a21=()A.29B.210C.211D.212解析:由bn=,且a1=2,得b1==,a2=2b1;b2=,a3=a2b2=2b1b2;b3=,a4=a3b3=2b1b2b3;…;an=2b1b2b3…bn-1,∴a21=2b1b2b3…b20,又{bn}为等比数列,∴a21=2(b1b20)(b2b19)…(b10b11)=2(b10b11)10=211.答案:C5.已知Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,则等于()A.4B.6C.8D.10解析:设数列{an}的公差为d,则S1=a1,S2=2a1+d,S4=4a1+6d,故(2a1+d)2=a1(4a1+6d),整理得d=2a1,所以===8,选C.答案:C6.在数列{an}中,若a1=2,且对任意正整数m,k,总有am+k=am+ak,则{an}的前n项和Sn=()A.n(3n-1)B.C.n(n+1)D.7.在等差数列{an}中,a1+3a3+a15=10,则a5的值为()A.2B.3C.4D.5解析设数列{an}的公差为d, a1+a15=2a8,∴2a8+3a3=10,∴2(a5+3d)+3(a5-2d)=10,∴5a5=10,∴a5=2.答案A8.等比数列{an}的前n项和为Sn,若2S4=S5+S6,则数列{an}的公比q的值为()A.-2或1B.-1或2C.-2D.1解析法一若q=1,则S4=4a1,S5=5a1,S6=6a1,显然不满足2S4=S5+S6,故A、D错.若q=-1,则S4=S6=0,S5=a5≠0,不满足条件,故B错,因此选C.法二经检验q=1不适合,则由2S4=S5+S6,得2(1-q4)=1-q5+1-q6,化简得q2+q-2=0,解得q=1(舍去),q=-2.答案C9.已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N*,则S10的值为()A.-110B.-90C.90D.11010.等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn等于()A.n(n+1)B.n(n-1)C.D.解析由a2,a4,a8成等比数列,得a=a2a8,即(a1+6)2=(a1+2)(a1+14),∴a1=2.∴Sn=2n+×2=2n+n2-n=n(n+1).答案A11.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且=,则使得为整数的正整数n的个数是()A.2B.3C.4D.5解析由等差数列的前n项和及等差中项,可得=======7+(n∈N*),故n=1,2,3,5,11时,为整数.即正整数n的个数是5.答案D12.若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大.解析根据题意知a7+a8+a9=3a8>0,即a8>0.又a8+a9=a7+a10<0,∴a9<0,∴当n=8时,{an}的前n项和最大.答案813.在等比数列{an}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15=________.答案314.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.解析由题意知,数列{bn}有连续四项在集合{-53,-23,19,37,82}中,说明{an}有连续四项在集合{-54,-24,18,36,81}中,由于{an}中连续四项至少有一项为负,∴q<0,又 |q|>1,∴{an}的连续四项为-24,36,-54,81,∴q==-,∴6q=-9.答案.-915.公差不为0的等差数列{an}的部分项ak1,ak2,ak3,…构成等比数列,且k1=1,k2=2,k3=6,则k4=________.答案22解析根据题意可知等差数列的a1,a2,a6项成等比数列,设等差数列的公差为d,则有(a1+d)2=a1(a1+5d),解得d=3a1,故a2=4a1,a6=16a1⇒ak4=a1+(n-1)·(3a1)=64a1,解得n=22,即k4=22.16.设函数f(x)=a1+a2x+a3x2+…+anxn-1,f(0)=,数列{an}满足f(1)=n2an(n∈N*),则数列{an}的通项公式为______...