电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 考点38 抛物线试题解读与变式-人教版高三全册数学试题VIP免费

高考数学 考点38 抛物线试题解读与变式-人教版高三全册数学试题_第1页
1/24
高考数学 考点38 抛物线试题解读与变式-人教版高三全册数学试题_第2页
2/24
高考数学 考点38 抛物线试题解读与变式-人教版高三全册数学试题_第3页
3/24
考点38抛物线【考纲要求】(1)了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;(2)掌握抛物线的定义、几何图形、标准方程及简单性质.;(3)了解抛物线的简单应用;(4)理解数形结合的思想.【命题规律】抛物线是历年高考命题的重点热点,考查抛物线的定义、标准方程,常与求参数和最值等问题相结合;考查抛物线的几何性质,常考查焦点弦及内接三角形问题;多与平面向量交汇考查抛物线的定义、方程与几何性质.预计2018年高考对抛物线的考查会以抛物线的定义与标准方程、几何性质、直线与抛物线位置关系三个为考点为主,在客观题中进行考查,难度中等偏低.也可能以解答题出现在大题,综合考查直线与抛物线的位置关系及与其它知识的交汇.【典型高考试题变式】(一)抛物线的定义及应用【例1】【2014全国新课标Ⅰ卷】已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【方法技巧归纳】涉及到抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解,如根据抛物线定义,将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.【变式1】【变为利用定义求焦点到坐标轴的距离】若抛物线上的点到焦点的距离为10,则到轴的距离是_______.【答案】9【解析】设抛物线的焦点为,则,于是由抛物线的定义知,所以,即为到轴的距离.【变式2】【变为求多条线段和】如果,,…,是抛物线:上的点,它们的横坐标依次为,,…,,是抛物线的焦点,若,则()A.B.C.D.【答案】A(二)抛物线的方程【例2】【2013全国新课标Ⅱ卷】设抛物线的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.或B.或C.或D.或【答案】C【解析】由题意知:,准线方程为,则由抛物线的定义知,,设以MF为直径的圆的圆心为,所以圆方程为,又因为点(0,2),所以,又因为点M在C上,所以,解得或,所以抛物线C的方程为或,故选C.【方法技巧归纳】求抛物线的标准方程应注意以下几点:(1)当坐标系已建立时,应根据条件确定抛物线的标准方程属于四种类型中的哪一种;(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.【变式1】【变为利用抛物线的性质求方程】过抛物线的焦点的直线依次交抛物线及其准线于点,若,且,则抛物线的方程为()A.B.C.D.【答案】C【变式2】【变为与双曲线交汇条件下求抛物线的方程】过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于两点,若,且,则抛物线方程为()A.B.C.D.【答案】C【解析】设抛物线的焦点坐标为,双曲线的一条渐近线方程为,所以设直线为,设,根据,解得:,因为,所以,,即,解得:或(舍),即抛物线方程为,故选C.(三)抛物线的几何性质【例3】【2016新课标Ⅰ卷】以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为A.2B.4C.6D.8【答案】B【方法技巧归纳】(1)涉及抛物线上的点到焦点的距离或到准线的距离,常可相互转化;(2)应用抛物线几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.【变式1】【变为抛物线通径的应用】已知点在抛物线:上,且点到的准线的距离与点到轴的距离相等,则的值为()A.B.1C.D.2【答案】B【解析】因为点到的准线的距离与点到轴的距离相等,所以点是抛物线通径的一个端点,所以,故选B.【变式2】【变为利用抛物线的对称性的应用】已知抛物线,过点作抛物线的两条切线,为切点,若直线经过抛物线的焦点,的面积为,则______.A.B.C.D.【答案】D【解析】(1)由抛物线的对称性知,,则,解得,直线方程为,所以所求抛物线标准方程为,故选D.(四...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 考点38 抛物线试题解读与变式-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部