第3讲函数的奇偶性与周期性一、选择题1.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是()A.y=B.y=|x|-1C.y=lgxD.y=解析:选B.y=为奇函数;y=lgx的定义域为(0,+∞),不具备奇偶性;y=在(0,+∞)上为减函数;y=|x|-1在(0,+∞)上为增函数,且在定义域上为偶函数.2.(2017·高考北京卷)已知函数f(x)=3x-,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数解析:选B.由f(-x)=()x-3x=-f(x),知f(x)为奇函数,因为y=()x在R上是减函数,所以y=-()x在R上是增函数,又y=3x在R上是增函数,所以函数f(x)=3x-()x在R上是增函数,故选B.3.若函数f(x)=ln(ax+)是奇函数,则a的值为()A.1B.-1C.±1D.0解析:选C.因为f(x)=ln(ax+)是奇函数,所以f(-x)+f(x)=0.即ln(-ax+)+ln(ax+)=0恒成立,所以ln[(1-a2)x2+1]=0,即(1-a2)x2=0恒成立,所以1-a2=0,即a=±1.4.(2018·成都第一次诊断)已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈时,f(x)=-x3,则f=()A.-B.C.-D.解析:选B.由f(x+3)=f(x)知函数f(x)的周期为3,又函数f(x)为奇函数,所以f=f=-f==.5.设f(x)是定义在实数集上的函数,且f(2-x)=f(x),若当x≥1时,f(x)=lnx,则有()A.f0的x的集合为________.解析:由奇函数y=f(x)在(0,+∞)上递增,且f=0,得函数y=f(x)在(-∞,0)上递增,且f=0,所以f(x)>0时,x>或-0的x的集合为.答案:8.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=,则f(1),g(0),g(-1)之间的大小关系是________.解析:在f(x)-g(x)=中,用-x替换x,得f(-x)-g(-x)=2x,由于f(x),g(x)分别是定义在R上的奇函数和偶函数,所以f(-x)=-f(x),g(-x)=g(x),因此得-f(x)-g(x)=2x.联立方程组解得f(x)=,g(x)=-,于是f(1)=-,g(0)=-1,g(-1)=-,故f(1)>g(0)>g(-1).答案:f(1)>g(0)>g(-1)19.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f=f.则f(6)=________.解析:当x>0时,x+>,所以f=f,即f(x+1)=f(x),所以f(6)=f(5)=f(4)=…=f(1)=-f(-1)=2.答案:210.已知函数f(x)=asinx+b+4,若f(lg3)=3,则f=________.解析:由f(lg3)=asin(lg3)+b+4=3得asin(lg3)+b=-1,而f=f(-lg3)=-asin(lg3)-b+4=-[asin(lg3)+b]+4=1+4=5.答案:5三、解答题11.设f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)是奇函数,当x>0时,f(x)=.(1)求当x<0时,f(x)的解析式;(2)解不等式f(x)<-.解:(1)因为f(x)是奇函数,所以当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,所以当x<0时,f(x)=-f(-x)=-=.(2)f(x)<-,当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,所以x∈(0,2).当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,所以解集是(-∞,-2)∪(0,2).12.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a-2]上单调递增.结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].2