电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 配餐作业43 空间几何体的表面积与体积(含解析)理-人教版高三全册数学试题VIP免费

高考数学一轮复习 配餐作业43 空间几何体的表面积与体积(含解析)理-人教版高三全册数学试题_第1页
1/7
高考数学一轮复习 配餐作业43 空间几何体的表面积与体积(含解析)理-人教版高三全册数学试题_第2页
2/7
高考数学一轮复习 配餐作业43 空间几何体的表面积与体积(含解析)理-人教版高三全册数学试题_第3页
3/7
配餐作业(四十三)空间几何体的表面积与体积(时间:40分钟)一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π解析由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π。故选C。答案C2.用平面α截球O所得截面圆的半径为3,球心O到平面α的距离为4,则此球的表面积为()A.B.C.75πD.100π解析依题意,设球半径为R,满足R2=32+42=25,∴S球=4πR2=100π。故选D。答案D3.(2016·安庆二模)一个几何体的三视图如图所示,其体积为()A.B.C.D.解析该几何体是一个直三棱柱截去一个小三棱锥,如图所示,其体积为V=×2×1×2-××1×1×1=,故选A。答案A4.(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1解析由三视图可得该几何体的直观图为三棱锥A-BCD,将其放在长方体中如图所示,其中BD=CD=1,CD⊥BD,三棱锥的高为1,所以三棱锥的体积为××1×1×1=,故选A。答案A5.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则三棱锥A-BCD的外接球的体积为()A.πB.2πC.3πD.4π解析三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,补成长方体,两者的外接球是同一个,长方体的体对角线就是球的直径。设长方体同一顶点处的三条棱长分别为a,b,c,由题意得:ab=,ac=,bc=,解得a=,b=,c=1,所以球的直径为=,它的半径为,球的体积为3=π。故选A。答案A6.如图,正方体ABCD—A′B′C′D′的棱长为4,动点E,F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′EFQ的体积()A.与点E,F位置有关B.与点Q位置有关C.与点E,F,Q位置都有关D.与点E,F,Q位置均无关,是定值解析因为VA′-EFQ=VQ-A′EF=××4=,故三棱锥A′EFQ的体积与点E,F,Q的位置均无关,是定值。故选D。答案D二、填空题7.某几何体的三视图如图所示,则其体积为__________。解析该几何体为一个半圆锥,故其体积为V=××π×12×2=。答案8.(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3。解析根据三视图可知该四棱锥的底面是底边长为2m、高为1m的平行四边形,四棱锥的高为3m,故其体积为×2×1×3=2(m3)。答案29.(2016·河南八市质检)正方形ABCD的边长为4,点E,F分别是边BC,CD的中点,沿AE,EF,FA折成一个三棱锥B-AEF(使点B,C,D重合于点B),则三棱锥B-AEF的外接球的表面积为________。解析沿AE,EF,FA折成一个三棱锥B-AEF,则三棱锥的三条侧棱两两垂直,故四面体B-AEF的外接球的直径为以BA,BE,BF为棱的长方体的体对角线,则长方体的体对角线2R===2,所以R=,故四面体B-AEF的外接球的表面积为S=4π×()2=24π。答案24π三、解答题10.如图,已知某几何体的三视图如下(单位:cm)。(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积。解析(1)这个几何体的直观图如图所示。(2)这个几何体可看成是正方体AC1及直三棱柱B1C1Q-A1D1P的组合体。由PA1=PD1=cm,A1D1=AD=2cm,可得PA1⊥PD1。故所求几何体的表面积S=5×22+2×2×+2××()2=22+4(cm2),体积V=23+×()2×2=10(cm3)。答案(1)见解析(2)表面积为(22+4)cm2体积为10cm311.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB∥DC,AD⊥AB,侧棱SA⊥底面ABCD,且SA=2,AD=DC=1,点E在SD上,且AE⊥SD。(1)证明:AE⊥平面SDC;(2)求三棱锥B-ECD的体积。解析(1)证明:因为侧棱SA⊥底面ABCD,CD⊂底面ABCD,所以SA⊥CD。因为底面ABCD是直角梯形,AB∥DC,AD⊥AB,所以AD⊥CD。又AD∩SA=A,所以CD⊥侧面SAD。又AE⊂侧面SAD,所以AE⊥CD。又AE⊥SD,CD∩SD=D,所以AE⊥平面SDC。(2)由(1)知,CD⊥平面ASD,所以CD⊥SD,所以S△EDC=ED·DC。在Rt△ASD中,SA=2,AD=1,AE⊥SD,所以ED=,AE=,所以S△EDC=××1=。⇒AB∥平面SCD,故点B到平面SCD的距离等于点A到平面SCD的距离AE,故VB-ECD=S△ECD·AE=。答案(1)见解析(2)(时间:20分钟)1...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 配餐作业43 空间几何体的表面积与体积(含解析)理-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部