小题专项训练4函数与导数一、选择题1.(2019年天津模拟)下列求导运算正确的是()A.(cosx)′=sinxB.(log2x)′=C.()′=D.(3x)′=3xlog3e【答案】C【解析】(cosx)′=-sinx,A错误;(log2x)′=,B错误;()′=()′=×·=,C正确;(3x)′=3xln3,D错误.故选C.2.(2018年江西模拟)已知函数f(x)=ln(ax-1)的导函数是f′(x),且f′(2)=2,则实数a的值为()A.B.1C.D.【答案】D【解析】因为f(x)=ln(ax-1),所以f′(x)=.所以f′(2)==2,解得a=.3.(2019年福建宁德模拟)函数f(x)=3+xlnx的单调递减区间是()A.B.C.D.【答案】B【解析】由f(x)=3+xlnx,得定义域为(0,+∞)且f′(x)=lnx+1,令lnx+1<0,解得00),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去,若存款利率为x(x∈(0,4.8%)),则使银行获得最大收益的存款利率为()A.3.1%B.3.2%C.3.4%D.3.5%【答案】B【解析】依题意知存款额是kx2,银行应支付的存款利息是kx3,银行应获得的贷款利息是0.048kx2,所以银行的收益是y=0.048kx2-kx3(00;当0.032