【大高考】2017版高考数学一轮总复习第9章平面解析几何第六节直线与圆锥曲线的位置关系AB卷文新人教A版1.(2016·新课标全国Ⅱ,21)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积.(2)当2|AM|=|AN|时,证明:0,由|AM|=|AN|及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0,解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(2)证明将直线AM的方程y=k(x+2)(k>0)代入+=1得(3+4k2)x2+16k2x+16k2-12=0,由x1·(-2)=得x1=,故|AM|=|x1+2|=.由题设,直线AN的方程为y=-(x+2),故同理可得|AN|=.由2|AM|=|AN|,得=,即4k3-6k2+3k-8=0,设f(t)=4t3-6t2+3t-8,则k是f(t)的零点,f′(t)=12t2-12t+3=3(2t-1)2≥0,所以f(t)在(0,+∞)单调递增,又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)有唯一的零点,且零点k在(,2)内,所以