§8.6空间向量在立体几何中的应用考纲解读考点内容解读要求高考示例常考题型预测热度空间向量及其应用①理解直线的方向向量与平面的法向量;②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用掌握2017浙江,9;2017课标全国Ⅱ,19;2017天津,17;2017江苏,22;2017北京,16;2017浙江,19;2017山东,17;2016课标全国Ⅲ,19;2016山东,17;2016浙江,17;2015课标Ⅱ,19;2014陕西,17;2013课标全国Ⅱ,18解答题★★★分析解读1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.五年高考考点空间向量及其应用1.(2017江苏,22,10分)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.解析在平面ABCD内,过点A作AE⊥AD,交BC于点E.因为AA1⊥平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以{,,}为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=,∠BAD=120°,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos<,>===-,1因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA1D的法向量,又=(,-1,-),=(-,3,0),则即不妨取x=3,则y=,z=2,所以m=(3,,2)为平面BA1D的一个法向量,从而cos<,m>===.设二面角B-A1D-A的大小为θ,则|cosθ|=.因为θ∈[0,π],所以sinθ==.因此二面角B-A1D-A的正弦值为.2.(2017北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.解析(1)设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).2所以cos==.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为α,则sinα=|cos|==.所以直线MC与平面BDP所成角的正弦值为.3.(2017课标全国Ⅱ,19,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.解析(1)取PA的中点F,连接EF,BF.因为E是PD的中点,所以EF∥AD,EF=AD.由∠BAD=∠ABC=90°得BC∥AD,又BC=AD,所以EFBC,四边形BCEF是平行四边形,CE∥BF,又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.(2)由已知得BA⊥AD,以A为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0).设M(x,y,z)(0|=sin45°,=,即(x-1)2+y2-z2=0.①又M在棱PC上,设=λ,则x=λ,y=1,z=-λ.②由①,②解得(舍去),或所以M,从而=.设m=(x0,y0,z0)是平面ABM的法向量,则即所以可取m=(0,-,2).于...