第十二章概率、随机变量及其分布12.6离散型随机变量的均值与方差、正态分布教师用书理新人教版1.离散型随机变量的均值与方差一般地,若离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn(1)均值称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.(2)方差称D(X)=∑(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,并称其算术平方根为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b.(2)D(aX+b)=a2D(X).(a,b为常数)3.两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).4.正态分布(1)正态曲线:函数φμ,σ(x)=,x∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示一般地,如果对于任何实数a,b(a110)==0.2,∴该班学生数学成绩在110分以上的人数为0.2×50=10.题型一离散型随机变量的均值、方差命题点1求离散型随机变量的均值、方差例1(2016·山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是,每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1...