电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题教师用书 理 苏教版-苏教版高三全册数学试题VIP免费

(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题教师用书 理 苏教版-苏教版高三全册数学试题_第1页
1/9
(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题教师用书 理 苏教版-苏教版高三全册数学试题_第2页
2/9
(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题教师用书 理 苏教版-苏教版高三全册数学试题_第3页
3/9
第3课时定点、定值、探索性问题题型一定点问题例1(2016·镇江模拟)已知椭圆+=1(a>0,b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足PM=λ1MQ,PN=λ2NQ.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点并求此定点.(1)解设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,∴a2=3.∴椭圆的方程为+y2=1.(2)证明由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),设l方程为x=t(y-m),由PM=λ1MQ知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意y1≠0,∴λ1=-1.同理由PN=λ2NQ知λ2=-1. λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①联立得(t2+3)y2-2mt2y+t2m2-3=0,∴由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②且有y1+y2=,y1y2=,③将③代入①得t2m2-3+2m2t2=0,∴(mt)2=1,由题意mt<0,∴mt=-1,满足②,得直线l方程为x=ty+1,过定点(1,0),即Q为定点.思维升华圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.(2016·河北衡水中学调研)如图,已知椭圆C的中心在原点,焦点在x轴上,离心率e=,F是右焦点,A是右顶点,B是椭圆上一点,BF⊥x轴,BF=.(1)求椭圆C的方程;(2)设直线l:x=ty+λ是椭圆C的一条切线,点M(-,y1),点N(,y2)是切线l上两个点,证明:当t,λ变化时,以MN为直径的圆过x轴上的定点,并求出定点坐标.解(1)由题意设椭圆方程为+=1(a>b>0),①焦点F(c,0),因为=,②将点B(c,)的坐标代入方程①得+=1.③由②③结合a2=b2+c2,得a=,b=1.故所求椭圆方程为+y2=1.(2)由得(2+t2)y2+2tλy+λ2-2=0.1因为l为切线,所以Δ=(2tλ)2-4(t2+2)(λ2-2)=0,即t2-λ2+2=0.④设圆与x轴的交点为T(x0,0),则TM=(--x0,y1),TN=(-x0,y2).因为MN为圆的直径,故TM·TN=x-2+y1y2=0.⑤当t=0时,不符合题意,故t≠0.因为y1=,y2=,所以y1y2=,代入⑤结合④得TM·TN==,要使上式为零,当且仅当x=1,解得x0=±1.所以T为定点,故动圆过x轴上的定点(-1,0)与(1,0),即椭圆的两个焦点.题型二定值问题例2如图,已知椭圆C:+=1,点B是其下顶点,过点B的直线交椭圆C于另一点A(点A在x轴下方),且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的动点,且直线AP,BP分别交直线y=x于点M,N,证明:OM·ON为定值.(1)解由已知得B(0,-2).设E(λ,λ),则A(2λ,2λ+2).把A的坐标代入椭圆方程,得+(λ+1)2=1,即λ2+2λ=0.则λ=-(λ=0舍去),得A(-3,-1).由kAB==-,得直线AB的方程为y=-x-2,即x+3y+6=0.(2)证明设M(m,m),N(n,n),P(x0,y0),则x+3y=12.由A,P,M共线,即AP∥AM,得(x0+3)(m+1)=(y0+1)(m+3),则m=.由B,P,N共线,即BP∥BN,得x0(n+2)=(y0+2)n,则n=.所以mn=2===3.从而OM·ON=|m|·|n|=6为定值.思维升华圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.(2016·扬州模拟)如图,在平面直角坐标系xOy中,点F(,0),直线l:x=-,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.(1)求动点Q的轨迹C的方程;(2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长TS是否为定值?请说明理由.解(1)依题意知,点R是线段FP的中点,且RQ⊥FP,∴RQ是线段FP的垂直平分线. 点Q在线段FP的垂直平分线上,∴PQ=QF,又PQ是点Q到直线l的距离,故动点Q的轨迹是以F为焦点,l为准线的抛物线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题教师用书 理 苏教版-苏教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部