2015年江西省上饶市横峰中学高考数学适应性试卷(理科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为()A.3B.11C.8D.122.复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.命题“∃x∈R,x2﹣2x+1<0”的否定是()A.∃x∈R,x2﹣2x+1≥0B.∃x∈R,x2﹣2x+1>0C.∀x∈R,x2﹣2x+1≥0D.∀x∈R,x2﹣2x+1<04.已知﹣2,a1,a2,﹣8成等差数列,﹣2,b1,b2,b3,﹣8成等比数列,则等于()A.B.C.D.或5.执行如图所示的程序框图,若输入x=7,y=6,则输出的有序数对为()A.(11,12)B.(12,13)C.(13,14)D.(13,12)6.某班周二上午安排数学、物理、历史、语文、体育五节课,则体育课不排第一节,且语文课与物理课不相邻的排法总数为()A.60B.96C.48D.727.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若α⊥γ,β⊥γ,则α∥βB.若m⊥α,n⊥α,则m∥nC.若m∥α,n∥α,则m∥nD.若m∥α,m∥β,则α∥β8.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=lnx+x,若f(a)=g(b)=h(c)=0,则()A.c<b<aB.b<c<aC.a<b<cD.a<c<b9.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.310.已知双曲线的左焦点是Fl,P是双曲线右支上的点,若线段PF1与y轴的交点M恰好为PF1的中点,且|OM|=a,则该双曲线的离心率为()A.B.C.2D.311.已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.12.已知a,b∈R,且ex+1≥ax+b对x∈R恒成立,则ab的最大值是()A.e3B.e3C.e3D.e3二、填空题(本题共4小题,每小题5分,共20分.将答案填入答题纸相应位置)13.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为15,则抽取的学生人数为.14.设a=dx,则二项式展开式中常数项是.15.一个三位自然数百位,十位,个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a、b、c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为”有缘数”的概率是.16.设函数y=f(x)的定义域为D,如果存在非零常数T,对于任意x∈D,都有f(x+T)=T•f(x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f(x)的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”y=f(x)的“似周期”为﹣1,那么它是周期为2的周期函数;②函数f(x)=x是“似周期函数”;③函数f(x)=2﹣x是“似周期函数”;④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.其中是真命题的序号是.(写出所有满足条件的命题序号)三、解答题(共5小题,共70分;要求写出必要的文字说明,解题过程和演算步骤)17.(10分)(2015•上饶校级模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0.(1)求角C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2015•临沂二模)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(I)求直方图中x的值;(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;(Ⅲ)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)19.(12分)(2015•上海模拟)如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=.(I)求证:AB⊥PC;(Ⅱ)求二面角B一PC﹣D的余弦值.20.(12分)(2015•邢台模拟)已知椭圆C1:=1(a>...