九年级数学反比例函数的性质和图象知识精讲一一.本周教学内容反比例函数的性质和图象(一)二.重点、难点1.反比例函数的增减性2.反比例函数图象的对称性[例1]函数是反比例函数,且在时,y随x的增大而减小,则m的值为。解:由知,,又由时,y随x增大而减小可知。[例2]若双曲线与直线,在第二象限内有一个公共点,则此点的坐标为(用k表示)。解:由解得∴此点坐标为[例3]双曲线在第一、三象限,以原点为圆心,1为半径的圆与它有四个交点,则m的取值范围为。解:如图所示,只须点A在⊙O内,即即可∴又知图象在一、三象限,故[例4]如图,反比例函数与一次函数图象交于点A、B,为正三角形,PA交x轴于M点,则。解:由对称性知∴作轴于L,轴于H则[例5]已知点和在函数的图象上,求(1)m和k的值;(2)求的面积。解:(1)由解得(2)由(1)知,∴直线:∴∴[例6]直线过点,与双曲线交于M、N两点,且M、N关于原点对称,求直线解析式及M点坐标。解:如图所示,易知M、N、O、P四点共线,故:∴或[例7]如图,双曲线和直线都过点。(1)求直线的解析式。(2)等腰梯形ABCD的顶点A、B在直线上,C、D在双曲线上,且轴,若点A、点B横坐标分别为a和a+2,求a值。解:(1)由在双曲线上得:,,代入直线解析式得∴(2)作于H,于L,由等腰梯形性质知∴∴解得或(舍),经检验,是方程的根【模拟试题】一.选择题1.已知,其中与成正比例,比例系数为,与成反比例,比例系数为,当时,则与之间的关系是()A.B.C.D.2.已知一次函数图象经过第一、二、四象限,则的图象在()A.第一、三象限B.第二、四象限C.第三、四象限D.第一、二象限3.如图,A、C是双曲线上任意两点,过A作x轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记,面积为S1,面积为S2,则()A.B.C.D.不能确定4.函数和的图象在同一坐标系中正确的是()ABCD5.正比例函数与反比例函数的图象有一个交点,则另一个交点的坐标为。6.双曲线当横坐标大于0时纵坐标随横坐标的增大而增大,则。7.双曲线过点,则在时y随x的增大而8.已知点P是反比例函数的图象在第二象限内一点,轴于M,轴于N,矩形,面积为5,则。二.解答题9.已知反比例函数与一次函数的图象交于A、B两点,求:(1)A、B坐标;(2)求的面积。[参考答案]一.1.C2.B3.C4.C5.6.37.增大8.二.9.