电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学二轮复习 专题三 第2讲 数列的综合应用提升训练 理-人教版高三全册数学试题VIP免费

(江苏专用)高考数学二轮复习 专题三 第2讲 数列的综合应用提升训练 理-人教版高三全册数学试题_第1页
1/3
(江苏专用)高考数学二轮复习 专题三 第2讲 数列的综合应用提升训练 理-人教版高三全册数学试题_第2页
2/3
(江苏专用)高考数学二轮复习 专题三 第2讲 数列的综合应用提升训练 理-人教版高三全册数学试题_第3页
3/3
第2讲数列的综合应用一、填空题1.(2015·全国Ⅱ卷)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,所以Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,得=-1-(n-1)=-n,所以Sn=-.答案-2.数列{an}的通项公式an=,若{an}的前n项和为24,则n为________.解析an==-(-),前n项和Sn=-[(1-)+(-)+…+(-)]=-1=24,故n=624.答案6243.(2012·江苏卷改编)各项均为正数的等比数列{an}满足a1a7=4,a6=8,若函数f(x)=a1x+a2x2+a3x3+…+a10x10的导数为f′(x),则f′=________.解析因为各项均为正数的等比数列{an}满足a1a7=4,a6=8,所以a4=2,q=2,故an=2n-3,又f′(x)=a1+2a2x+3a3x2+…+10a10x9,所以f′=2-2+2×2-2+3×2-2+…+10×2-2=2-2×=.答案4.在等差数列{an}中,a1=142,d=-2,从第一项起,每隔两项取出一项,构成新的数列{bn},则此数列的前n项和Sn取得最大值时n的值是________.解析因为从第一项起,每隔两项取出一项,构成数列{bn},所以新数列的首项为b1=a1=142,公差为d′=-2×3=-6,则bn=142+(n-1)(-6).令bn≥0,解得n≤24,因为n∈N*,所以数列{bn}的前24项都为正数项,从25项开始为负数项.因此新数列{bn}的前24项和取得最大值.答案245.在正项数列{an}中,a1=2,an+1=2an+3×5n,则数列{an}的通项公式为________.解析在递推公式an+1=2an+3×5n的两边同时除以5n+1,得=×+,①令=bn,则①式变为bn+1=bn+,即bn+1-1=(bn-1),所以数列{bn-1}是等比数列,其首项为b1-1=-1=-,公比为.所以bn-1=×,即bn=1-×=,故an=5n-3×2n-1.答案an=5n-3×2n-16.(2015·苏、锡、常、镇模拟)已知各项都为正的等比数列{an}满足a7=a6+2a5,存在两项am,an使得=4a1,则+的最小值为________.解析由a7=a6+2a5,得a1q6=a1q5+2a1q4,整理有q2-q-2=0,解得q=2或q=-1(与条件中等比数列的各项都为正矛盾,舍去),又由=4a1,得aman=16a,即a2m+n-2=16a,即有m+n-2=4,亦即m+n=6,那么+=(m+n)=≥=,当且仅当=,m+n=6,即n=2m=4时取得最小值.答案7.(2015·南通调研)设Sn为数列{an}的前n项之和,若不等式a+≥λa对任何等差数列{an}及任何正整数n恒成立,则λ的最大值为________.解析a1=0时,不等式恒成立;当a1≠0时,λ≤+,将an=a1+(n-1)d,Sn=na1+代入上式,并化简得:λ≤+,所以λ≤,即λmax=.答案8.(2015·南京、盐城模拟)已知等比数列{an}的首项为,公比为-,其前n项和为Sn,若A≤Sn1-≤B对n∈N*恒成立,则B-A的最小值为________.解析依题意得Sn==1-,当n为奇数时,Sn=1+∈;当n为偶数时,Sn=1-∈.由函数y=x-在(0,+∞)上是增函数得Sn-的取值范围是∪,因此有A≤-,B≥,B-A≥+=,即B-A的最小值是.答案二、解答题9.数列{an}满足an=2an-1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;(2)是否存在一个实数t,使得bn=(an+t)(n∈N*),且数列{bn}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{an}的前n项和Sn.解(1)由a3=27,得27=2a2+23+1,∴a2=9, 9=2a1+22+1,∴a1=2.(2)假设存在实数t,使得{bn}为等差数列,则2bn=bn-1+bn+1,(n≥2且n∈N*)∴2×(an+t)=(an-1+t)+(an+1+t),∴4an=4an-1+an+1+t,∴4an=4×+2an+2n+1+1+t,∴t=1.即存在实数t=1,使得{bn}为等差数列.(3)由(1),(2)得b1=,b2=,∴bn=n+,∴an=·2n-1=(2n+1)2n-1-1,Sn=(3×20-1)+(5×21-1)+(7×22-1)+…+[(2n+1)×2n-1-1]=3+5×2+7×22+…+(2n+1)×2n-1-n,①∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n,②由①-②得-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n=1+2×-(2n+1)×2n+n=(1-2n)×2n+n-1,∴Sn=(2n-1)×2n-n+1.10.(2013·江苏卷)设{an}是首项为a,公差为d的等差数列(d≠0)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学二轮复习 专题三 第2讲 数列的综合应用提升训练 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部