2015-2016学年湖北省宜昌市长阳一中高二(上)期末数学试卷(文科)一、选择题(本题共12道小题,每小题5分,共60分)1.直线x﹣y+3=0的斜率是()A.B.C.﹣D.﹣2.某品牌空调在元旦期间举行促销活动,所示的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是()A.13B.14C.15D.163.双曲线2x2﹣y2=8的实轴长是()A.4B.4C.2D.24.已知两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,则满足条件a的值为()A.B.C.﹣2D.25.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3B.11C.38D.1236.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()1A.外离B.相交C.内切D.外切7.如图是一个几何体的三视图,则该几何体的体积是()A.54B.27C.18D.98.定义在R上的函数f(x),g(x)的导函数分别为f′(x),g′(x)且f′(x)<g′(x).则下列结论一定成立的是()A.f(1)+g(0)<g(1)+f(0)B.f(1)+g(0)>g(1)+f(0)C.f(1)﹣g(0)>g(1)﹣f(0)D.f(1)﹣g(0)<g(1)﹣f(0)9.若双曲线﹣=1的一个焦点到一条渐近线的距离为2a,则双曲线的离心率为()A.2B.C.D.10.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件11.函数f(x)=ax3﹣x2+5(a>0)在(0,2)上不单调,则a的取值范围是()A.0<a<1B.0<a<C.<a<1D.a>1212.已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.B.2C.D.3二、填空题(本题共4道小题,每小题5分,共20分)13.已知点A(2,3,5),点B(3,1,4),那么A,B两点间的距离为.14.如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角等于.15.如表是某单位1﹣4月份水量(单位:百吨)的一组数据:由散点图可知,用水量y与月份x之间有较强的线性相关关系,其线性回归直线方程是,由此可预测该单位第5个月的用水量是百吨.月份x1234用水量y4.5432.516.若在区间内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为.三、解答题(本题共6道小题,第1题10分,第2题12分,第3题12分,第4题12分,第5题12分,第6题12分,共70分)317.已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m﹣2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取值范围.18.在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=1,CD=2.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PBD.19.两会结束后,房价问题仍是国民关注的热点问题,某高校金融学一班的学生对某城市居民对房价的承受能力(如能买每平方米6千元的房子即承受能力为6千元)的调查作为社会实践,进行调查统计,将承受能力数据按区间(千元)进行分组,得到如下统计图:(1)求a的值,并估计该城市居民的平均承受能力是多少元;(2)若用分层抽样的方法,从承受能力在内任取一个实数a,则使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为.【考点】几何概型.【专题】计算题;概率与统计.【分析】利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a,最后根据几何概型的概率公式可求出所求.【解答】解: 直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点,∴≤,解得﹣1≤a≤3,∴在区间内任取一个实数a,使直线x+y+a=0与圆(x﹣1)2+(y+2)2=2有公共点的概率为=故答案为:.4【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.三、解答题(本题共6道小题,第1题10分,第2题12分,第3题12分,第4题12分,第5题12分,第6题12分,共70分)17.已知命题p:方程x2+mx+1=0有两个不相等的...