《三角形内角和》教学设计教学目标:1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重难点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一副三角板。教学过程:(一)谈话导入。猜谜语:形状似座山,稳定性能坚。三竿首尾连,学问不简单。(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?学生讲学过的三角形知识。师:就这么简单的一个三角形我们就得出了那么多的知识,你们说数学知识神气不神奇?今天我们还要继续研究三角形的新知识。(二)创设情境,引出课题,以疑激思。师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。生3:当然是大三角形的内角和大了。生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)(三)动手操作,探究问题,以动启思1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。学生们能够很快求出每块三角尺的3个角的和都是180°(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。(1)、小组合作,讨论验证方法(2)汇报验证方法、结果谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?生A:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。生:不管什么三角形三个角都能拼成一个平角。师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。生B:我们小组是用撕的方法。我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。(真会动脑筋,不用工具也行)生C:我们小组是用折的方法,同样得到三角形的内角和是180度。师:请这位同学折来给大家看看。(投影仪展示)生:3个角折成了一个平角。师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况...