课时跟踪检测(四十)空间几何体的结构特征及三视图与直观图一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(2015·青岛模拟)将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()3.(2015·烟台一模)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1B.2C.3D.44.(2015·淄博一模)把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥ABCD的正视图与俯视图如图所示,则其侧视图的面积为()A.B.C.D.5.(2015·武昌调研)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()6.如图,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的正(主)视图与侧(左)视图的面积的比值为()A.B.1C.2D.不确定,与点P的位置有关二、填空题7.(2015·西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.8.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.9.(2015·昆明、玉溪统考)如图,三棱锥VABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其正(主)视图的面积为,则其侧(左)视图的面积为________.10.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.三、解答题11.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.12.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.答案1.选A圆柱的正视图是矩形,则该几何体不可能是圆柱.2.选C长方体的侧面与底面垂直,所以俯视图是C.3.选D观察三视图,可得直观图如图所示.该三棱锥ABCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形;由CD⊥BC,CD⊥AB,知CD⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形,故选D.4.选D由正视图与俯视图可得三棱锥ABCD的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为,所以侧视图的面积为S=××=,选D.5.选D易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B、D选项知,D选项中侧视图方向错误,故选D.6.选B如题图所示,设正方体的棱长为a,则三棱锥PABC的正(主)视图与侧(左)视图都是三角形,且面积都是a2,故选B.7.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为,所以正视图的面积为2.答案:28.解析:由题意知原图形OABC是平行四边形,且OA=BC=6,设平行四边形OABC的高为OE,则OE××=O′C′,∵O′C′=2,∴OE=4,∴S▱OABC=6×4=24.答案:249.解析:设三棱锥VABC的底面边长为a,侧面VAC边AC上的高为h,则ah=,其侧(左)视图是由底面三角形ABC边AC上的高与侧面三角形VAC边AC上的高组成的直角三角形,其面积为×a×h=××=.答案:10.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCDA1B1C1D1中的四面体ACB1D1;②错误,反例如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①11.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.12.解:(1)该四棱锥的俯视图为(内含对角线)边长为6cm的正方形,如图,其面积为36cm2.(2)由侧视图可求得PD===6.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA===6cm.