课时限时检测(六十七)合情推理与演绎推理(时间:60分钟满分:80分)一、选择题(每小题5分,共30分)1.如图11-2-2是某年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()图11-2-2【答案】A2.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)【答案】D3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确【答案】C4.(2014·安阳模拟)我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值a,类比上述结论,在边长为a的正四面体内任一点到其四个面的距离之和为定值()A.aB.aC.aD.a【答案】A5.观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A.01B.43C.07D.49【答案】B6.已知函数y=f(x)的定义域为D,若对于任意的x1,x2∈D(x1≠x2),都有f<,则称y=f(x)为D上的凹函数.由此可得下列函数中的凹函数为()A.y=log2xB.y=C.y=x2D.y=x3【答案】C二、填空题(每小题5分,共15分)7.由代数式的乘法法则类比推导向量的数量积的运算法则:①由“mn=nm”类比得到“a·b=b·a”;②由“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③由“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;④由“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”.以上结论正确的是________.【答案】①②8.已知经过计算和验证有下列正确的不等式:+<2,+<2,+<2,根据以上不等式的规律,请写出一个对正实数m,n都成立的条件不等式________.【答案】若正数m,n满足m+n=20时,有+<29.(2013·安徽高考)如图11-2-3,互不相同的点A1,A2,…,An,…和B1,B2,…,Bn,…分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面积均相等,设OAn=an.若a1=1,a2=2,则数列{an}的通项公式是________.图11-2-3【答案】an=三、解答题(本大题共3小题,共35分)10.(10分)观察下表:1,2,34,5,6,7,8,9,10,11,12,13,14,15,…问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2013是第几行的第几个数?【解】(1)∵第n+1行的第1个数是2n,∴第n行的最后一个数是2n-1.(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)==3·22n-3-2n-2.(3)∵210=1024,211=2048,1024<2013<2048,∴2013在第11行,该行第1个数是210=1024,由2013-1024+1=990,知2013是第11行的第990个数.11.(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【解】(1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°=1-sin30°=.(2)归纳三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα(cos30°cosα+sin30°sinα)=-cos2α++(cos60°cos2α+sin60°sin2α)-sinαcosα-sin2α=-cos2α++cos2α+sin2α-sin2α-(1-cos2α)=1-cos2α-+cos2α=.12.(13分)在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:=+,那么在四面体ABCD中,类比上述结论,你能得到怎样的猜想,并说明理由.【证明】如图所示,由射影定理AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴===.又BC2=AB2+AC2,∴==+.猜想,四面体ABCD中,AB、AC、AD两两垂直,AE⊥平面BCD,则=++.证明:如图,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴=+.在Rt△ACD中,AF⊥CD,∴=+.∴=++,故猜想正确.