电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标)高考数学大一轮复习 推理与证明板块命题点专练(十)理(含解析)-人教版高三全册数学试题VIP免费

(新课标)高考数学大一轮复习 推理与证明板块命题点专练(十)理(含解析)-人教版高三全册数学试题_第1页
1/5
(新课标)高考数学大一轮复习 推理与证明板块命题点专练(十)理(含解析)-人教版高三全册数学试题_第2页
2/5
(新课标)高考数学大一轮复习 推理与证明板块命题点专练(十)理(含解析)-人教版高三全册数学试题_第3页
3/5
板块命题点专练(十)推理与证明(研近年高考真题——找知识联系,找命题规律,找自身差距)命题点一合情推理与演绎推理命题指数:☆☆☆难度:中、低题型:选择题、填空题1.(2014·陕西高考)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是____________.2.(2014·新课标全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为________.3.(2013·湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n,……可以推测N(n,k)的表达式,由此计算N(10,24)=________.命题点二直接证明与间接证明命题指数:☆☆☆☆☆命题指数:☆☆☆☆☆难度:高、中题型:解答题1.(2014·江西高考)已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.2.(2014·北京高考)如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥EABC的体积.命题点三数学归纳法命题指数:☆☆难度:高题型:解答题(2014·江苏高考)已知函数f0(x)=(x>0),设fn(x)为fn-1(x)的导数,n∈N*.(1)求2f1+f2的值;(2)证明:对任意的n∈N*,等式nfn-1+fn=都成立.答案命题点一1.解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.答案:F+V-E=22.解析:由甲、丙的回答易知甲去过A城市和C城市,乙去过A城市或C城市,结合乙的回答可得乙去过A城市.答案:A3.解析:由N(n,3)=n2+n,N(n,4)=n2+n,N(n,5)=+n,N(n,6)=n2+n,推测N(n,k)=n2-n,k≥3.从而N(n,24)=11n2-10n,N(10,24)=1000.答案:1000命题点二1.解:(1)由Sn=,得a1=S1=1,当n≥2时,an=Sn-Sn-1=3n-2,当n=1时也适合.所以数列{an}的通项公式为:an=3n-2.(2)证明:要使得a1,an,am成等比数列,只需要a=a1·am,即(3n-2)2=1·(3m-2),即m=3n2-4n+2,而此时m∈N*,且m>n.所以对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.2.解:(1)证明:在三棱柱ABCA1B1C1中,BB1⊥底面ABC.所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE.所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连结EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB==.所以三棱锥EABC的体积V=S△ABC·AA1=×××1×2=.命题点三解:(1)由已知,得f1(x)=f′0(x)=′=-,于是f2(x)=f′1(x)=′-′=--+,所以f1=-,f2=-+.故2f1+f2=-1.(2)证明:由已知,得xf0(x)=sinx,等式两边分别对x求导,得f0(x)+xf′0(x)=cosx,即f0(x)+xf1(x)=cosx=sin,类似可得2f1(x)+xf2(x)=-sinx=sin(x+π),3f2(x)+xf3(x)=-cosx=sin,4f3(x)+xf4(x)=sinx=sin(x+2π).下面用数学归纳法证明等式nfn-1(x)+xfn(x)=sin对所有的n∈N*都成立.①当n=1时,由上可知等式成立.②假设当n=k时等式成立,即kfk-1(x)+xfk(x)=sin.因为[kfk-1(x)+xfk(x)]′=kf′k-1(x)+fk(x)+xf′k(x)=(k+1)fk(x)+xfk+1(x),′=cos·′=sin,所以(k+1)fk(x)+xfk+1(x)=sin.因此当n=k+1时,等式也成立.综合①②可知等式nfn-1(x)+xfn(x)=sin对所有的n∈N*都成立.令x=,可得nfn-1+fn=sin(n∈N*).所以=(n∈N*).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标)高考数学大一轮复习 推理与证明板块命题点专练(十)理(含解析)-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部