课时跟踪检测(四十五)突破立体几何中的3大经典问题1.如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别是PA,PD的中点,在此几何体中,给出下面四个结论:①BE与CF异面;②BE与AF异面;③EF∥平面PBC;④平面BCE⊥平面PAD.其中正确结论的个数是()A.1B.2C.3D.4解析:选B画出该几何体,如图.因为E,F分别是PA,PD的中点,所以EF∥AD,所以EF∥BC,BE与CF是共面直线,故①不正确;BE与AF满足异面直线的定义,故②正确;由E,F分别是PA,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,故③正确;因为BE与PA的关系不能确定,所以不能判定平面BCE⊥平面PAD,故④不正确.故选B.2.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥平面EFHB.AH⊥平面EFHC.HF⊥平面AEFD.HG⊥平面AEF解析:选B根据折叠前、后AH⊥HE,AH⊥HF不变,且HE∩HF=H,∴AH⊥平面EFH,B正确; 过A只有一条直线与平面EFH垂直,∴A不正确; AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过点H作直线垂直于平面AEF,垂线一定在平面HAG内,∴C不正确;由条件证不出HG⊥平面AEF,∴D不正确.故选B.3.如图所示,在正三棱锥SABC中,∠BSC=40°,SB=2,则一动点从点B出发,沿着三棱锥的侧面绕行一周回到点B的最短路线的长为()A.2B.3C.2D.3解析:选C沿SB,AB,BC将棱锥侧面剪开并展开成一个平面图形SBACB1,如图所示,则动点的最短路线为线段BB1.在△SBB1中,SB=SB1=2,∠BSB1=120°,所以BB1=2.故选C.4.如图,正方体ABCDA1B1C1D1的棱长为4,点P,Q分别在底面ABCD、棱AA1上运动,且PQ=4,点M为线段PQ的中点,则线段C1M的长度的最小值为()A.2B.4-2C.6D.4解析:选B连接AP,AC1,AM.由正方体的结构特征可得,QA⊥平面ABCD,所以QA⊥AP.因为PQ=4,点M为线段PQ的中点,所以AM=PQ=2,故点M在以A为球心,半径R=2的球面上,易知AC1=4,所以C1M的最小值为AC1-R=4-2.5.已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为________.解析:由题意得圆锥的母线长为3,设圆锥的底面半径为r,高为h,则h=,所以圆锥的体积V=πr2h=πr2=π.设f(r)=9r4-r6(r>0),则f′(r)=36r3-6r5,令f′(r)=36r3-6r5=6r3(6-r2)=0,得r=,所以当0<r<时,f′(r)>0,f(r)单调递增;当r>时,f′(r)<0,f(r)单调递减,所以f(r)max=f()=108,所以Vmax=π×=2π.答案:2π6.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是__________(填序号).①A′C⊥BD;②∠BA′C=90°;③四面体A′BCD的体积为.解析: BD⊥CD,平面A′BD⊥平面BCD,平面A′BD∩平面BCD=BD,CD⊂平面BCD,∴CD⊥平面A′BD,又A′D⊂平面A′BD,∴CD⊥A′D. AB=AD=CD=1,BD=,∴A′C=,BC=,∴A′B2+A′C2=BC2,∴A′B⊥A′C,即∠BA′C=90°,故②正确;四面体A′BCD的体积V=××12×1=,故③正确.答案:②③7.已知A,B,C是球O的球面上三点,且AB=AC=3,BC=3,D为该球面上的动点,球心O到平面ABC的距离为球半径的一半,则三棱锥DABC体积的最大值为________.解析:如图,在△ABC中, AB=AC=3,BC=3,∴由余弦定理可得cosA==-,∴sinA=.设△ABC外接圆O′的半径为r,则=2r,得r=3.设球的半径为R,连接OO′,BO′,OB,则R2=2+32,解得R=2.由图可知,当点D到平面ABC的距离为R时,三棱锥DABC的体积最大, S△ABC=×3×3×=,∴三棱锥DABC体积的最大值为××3=.答案:8.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥PA1B1CD1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?解:(1)...