山东省聊城市高唐县2018届九年级数学上学期期中试题时间:120分钟;满分:120分一、选择题(本大题共12小题,共36分)1、下列方程中,是一元二次方程的是()A.2x-y=3B.x2+=2C.x2+1=x2-1D.x(x-1)=02、下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A.B.C.D.3、如图,AB是⊙O的直径,CD是弦,∠ABC=65°,则∠D的度数为()A.130°B.65°C.35°D.25°4、如图,在⊙O中,直径AB与弦CD垂直相交于点E,连结AC,OC,若∠A=30°,OC=4,则弦CD的长是()A.B.4C.D.85、△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是()A.sinα=cosαB.tanC=2C.sinβ=cosβD.tanα=16、关于x的一元二次方程(m-1)x2+2x+m2-5m+4=0,常数项为0,则m值等于()A.1B.4C.1或4D.07、如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6B.8C.10D.128、如图,在△ABC中,点P在边AB上,则在下列四个条件中::①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9、如图,一艘潜艇在海面下500米A处测得俯角为30°的海底C处有一黑匣子发出信号,继续在同一深度直线航行4000米后,在B处测得俯角为60°的海底也有该黑匣子发出的信号,则黑匣子所在位置点C在海面下的深度为()A.2000米B.4000米C.2000米D.(2000+500)米10、小明同学将一张圆桌紧靠在矩形屋子的一角,与相邻两面墙相切,她把切点记为A、B,然后,她又在桌子边缘上任取一点P(异于A、B),则∠APB的度数为()A.45°B.135°C.45°或135°D.90°或135°11、如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.4或4.8B.3或4.8C.2或4D.1或612、如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.16B.24-4πC.32-4πD.32-8π二、填空题(本大题共5小题,共15分)13、已知CD是Rt△ABC斜边上的高线,且AB=10,若BC=8,则cos∠ACD=______.14、如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为米.15、阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知线段a,c如图.小芸的作法如下:①取AB=c,作AB的垂直平分线交AB于点O;②以点O为圆心,OB长为半径画圆;③以点B为圆心,a长为半径画弧,与⊙O交于点C;④连接BC,AC.则Rt△ABC即为所求.老师说:“小芸的作法正确.”请回答:小芸的作法中判断∠ACB是直角的依据是.16、已知一个正六边形的边心距为,则它的半径为______.17、如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为.三、解答题18、计算:(每小题4分,共8分)(1)sin260°+cos260°-tan45°;(2)|-|+-4cos45°+2sin30°.19、解方程:(每小题4分,共8分)(1)2y2+5y=7.(公式法)(2)y2-4y+3=0(配方法)20、(8分)如图,在边长均为l的小正方形网格纸中,△ABC的顶点A、B、C均在格点上,O为直角坐标系的原点,点A(-1,0)在x轴上.(1)以O为位似中心,将△ABC放大,使得放大后的△A1B1C1与△ABC的相似比为2:1,要求所画△A1B1C1与△ABC在原点两侧;(2)分别写出B1、C1的坐标.21、(8分)如图,在一个坡角为20°的斜坡上有一棵树,高为AB,当太阳光线与水平线成52°角时,测得该树斜坡上的树影BC的长为10m,求树高AB(精确到0.1m)(已知:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin52°≈0.788,cos52°≈0.616,tan52°≈1.280.供选用)22、(8分)如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、...