初三数学二次根式的加减知识精讲一.本周教学内容:二次根式的加减教学目标:(1)掌握同类二次根式的概念,会合并同类二次根式。(2)能熟练地进行二次根式的加减运算。(3)会进行二次根式的混合运算。二.重点、难点:重点:二次根式的加减运算难点:二次根式的化简课堂教学:(一)知识要点:知识点1:同类二次根式(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。知识点2:合并同类二次根式的方法合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。知识点3:二次根式的加减法则二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。知识点4:二次根式的混合运算方法和顺序运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。知识点5:二次根式的加减法则与乘除法则的区别乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。例1.下面各组里的二次根式是不是同类二次根式?说说你的理由。(1)(2)(3)(4)解:(1)是同类二次根式(2)∵∴(3)不是同类二次根式(4)不是同类二次根式例2.计算(1)(2)(3)解:(1)=(2)=(3)=注意:(3)中的不能写成例3.计算(1)(2)解:(1)=(2)=例4.计算(1)(2)(3)解:(1)=4-3=1(2)=9+(3)=例5.计算(1)(a>0)(2)(a>0,b>0)解:(1)原式=(2)原式=例6.若是同类根式,求m,n的值。解:∵例7.已知:x=。解:∵∴当x=例8.已知。解:∵∴∴=(4+2例9.不求近似值比较。解:∵又∵>∴>例10.已知,求代数式的值。解:由题意,得==将x例11.是否存在正整数a,b(ayB.x=yC.x