电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

三年高考2012018高考数学试题分项版解析-专题1解三角形-理含解析VIP免费

三年高考2012018高考数学试题分项版解析-专题1解三角形-理含解析_第1页
1/18
三年高考2012018高考数学试题分项版解析-专题1解三角形-理含解析_第2页
2/18
三年高考2012018高考数学试题分项版解析-专题1解三角形-理含解析_第3页
3/18
是的是的广泛广泛1专题11解三角形考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题掌握2017山东,9;2017浙江,14;2017天津,15;2017北京,15;2016课标全国Ⅱ,13;2016天津,3;2015天津,13选择题填空题★★★2.正、余弦定理的应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题掌握2017课标全国Ⅱ,17;2017课标全国Ⅲ,17;2017江苏,18;2016课标全国Ⅲ,8;2016山东,16;2016浙江,16;2015湖北,13解答题★★★分析解读1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.2018年高考全景展示1.【2018年理数全国卷II】在中,,,,则A.B.C.D.【答案】A是的是的广泛广泛2【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.2.【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=___________,c=___________.【答案】3点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.3.【2018年全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,则A.B.C.D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知,所以,由余弦定理,所以,,,故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。4.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9是的是的广泛广泛3【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.5.【2018年理数天津卷】在中,内角A,B,C所对的边分别为a,b,c.已知.(I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.是的是的广泛广泛46.【2018年理北京卷】在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1)∠A=(2)AC边上的高为【解析】分析:(1)先根据平方关系求sinB,再根据正弦定理求sinA,即得∠A;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得AC边上的高.详解:解:(Ⅰ)在△ABC中, cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=. B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中, sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在△ABC中, sinC=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7.【2018年理新课标I卷】在平面四边形中,,,,.(1)求;(2)若,求.【答案...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

三年高考2012018高考数学试题分项版解析-专题1解三角形-理含解析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部