自动化综合实践报告一、设计项目简介1.1项目简介在人们的生产生活中,温度扮演着极其重要的角色。特别是在冶金、医药、食品制造和化学制造业等行业尤其显得重要,在适当的温度下生产的产品质量、产量和合格率会大大的提高。随着社会生产力和科学技术的发展,工农业生产和生活中对于温度的要求会越来越高,因此能够检测温度变化的温度检测设备出现在人们的视线中。恒温控制系统应用于各种工业或者民用领域,如何精确地控制温度成为一个非常重要的研究问题。本系统需要利用STM32来控制各器件的工作情况,使传感器维持在一个固定的温度上。本文所研究的课题是基于嵌入式的恒温控制系统设计,实现了温度的实时监测与控制。温度控制部分,提出了用DHT11、STM32F103ZET6和LCD的硬件电路完成对室温的实时检测及显示,利用DHT11与嵌入式系统连接由软件与硬件电路配合来实现对加热片和散热风扇的实时控制。从DHT11读出或写入DHT11信息仅需要一根数据线,其读写及其温度变换功率来源于数据线,该总线本身也可以向所挂接的DHT11提供电源,不需要额外电源。DC5V散热风扇的实时控制也仅仅需要一根口线,由开发板供电,不需要外加电源。而且本次的设计主要实现温度监测,超温报警,温度控制,超过设定的门限值时自动启动加热和散热装置等功能。而且还要以STM32开发板为主机,使温度传感器通过一根信号线与嵌入式开发板相连接,再加上温度控制部分和人机交互部分来共同实现温度的监测与控制。1.2实现的功能(1)能够连续测量环境的温度值,用LCD屏幕来显示环境的实际温度。(2)能够设定恒温的温度范围,初始范围是29°C。(3)能够实现温度自动控制,如果设定温度在30C〜33C,则能使温度保持恒定在30C〜33C。(4)使用嵌入式STM32F103ZET6控制,通过按键来选择LCD屏显示的个人信息界面和温度控制界面,通过程序输入来控制恒温范围的设定值,数值采用LCD屏幕显示,并且能够实时显示降温风扇的输出特性曲线。(5)温度超出范围时能够自动调节降温风扇的转速,达到恒温控制的目标。二、总体设计2.1系统功能设计该设计主要由STM32单片机系统模块,温湿度采集模块、显示模块和键盘模块,降温模块等构成,以STM32F103ZET6芯片作为核心处理器。主要完成的功能有以下几点:对室内温度进行实时检测采集、可按照指令改变控制参数、检测的温度显示出来,通过PID控制算法保持设定温度的恒定,温度出现偏差时可通过降温风扇实时调节,并将输出特性显示在LCD屏上。2.2系统方案论证电路总体可以分为温度采集模块、单片机STM32最小系统模块、电机驱动模块、按键模块以及显示模块等。以STM32单片机最小系统作为核心控制电路,传感器采集温湿度作为STM32的输入,电机驱动模块、TFTLCD2.8寸液晶屏,以及按键模块作为STM32的输出。采集温度方面由DHT11温度传感器来完成,它是一个数字温度传感器、内置模数转换,可直接与单片机相连接。而TFTLCD2.8寸液晶显示屏是插针式,也可以直接与单片机相连接。通过DHT11传感器采集当前的温湿度值、经单片机将其处理后的数据送到TFTLCD液晶显示屏来进行显示,主要显示测得的实时温度与设定的温度上下限。利用键盘设置温度阈值,如果当前采集的实时温度不在设定的温度阈值范围之内,则由STM32单片机发出指令来控制电机驱动模块,使电机正常工作来实现室内温度控制。2.3系统功能框图按照系统能的具体要求,在保证实现其功能的基础上,尽可能降低系统成本。总体设计方案围绕上述思想,初步确定系统的方案如图1.1所示图1.1功能模块框图三、硬件设计3.1控制芯片选择方案一:选用STM32F103ZET6单片机该单片机有144个引脚,为32微处理器M3内核,最大时钟频率可达到72MZhz,处理速度快,效率高。其内部有8个定时器,内个能输出4路PWM波,且有六个能能配置4个通道的捕获。同时内部还有多路AD、DA等,配置有SPI、I2C接口等,内部资源极为丰富,用该处理器为设计带来很大方便[5]。方案二:选用STM32F103RCT6单片机该单片机有64个引脚,跟上述的STM32ZET6功能极为相似,同样也有多路PWM、输入捕获、AD、DA,配有SPI、I2C等接口,内部资源较为丰富。但是相比STM32ZET6,该单片机体积小,引脚少。内部只有四...