复习课(三)不等式一元二次不等式一元二次不等式和一元二次方程、一元二次函数三者构成一个统一的整体.贯穿于高中数学的始终,更是高考的重点内容,在考题中有时单独对某类不等式的解法进行考查,一般以小题形式出现,难度不大,但有时在解答题中与其它知识联系在一起,难度较大.解一元二次不等式需熟悉一元二次方程、二次函数和一元二次不等式三者之间的关系,其中二次函数的零点是联系这三个“二次”的枢纽.(1)确定ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)在判别式Δ>0时解集的结构是关键.在未确定a的取值情况下,应先分a=0和a≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a的符号和方程ax2+bx+c=0的两个根,再由根与系数的关系就可知a,b,c之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.[典例](1)已知不等式ax2+bx+2>0的解集为{x|-11}(2)解关于x的不等式ax2-2ax+a+3>0.[解析](1)由题意知x=-1,x=2是方程ax2+bx+2=0的根.由根与系数的关系得⇒∴不等式2x2+bx+a<0,即2x2+x-1<0.解得-14的解集为{x|x<1或x>b}.(1)求a,b的值;(2)解不等式ax2-(ac+b)x+bc<0.解:(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,b>1且a>0.由根与系数的关系,得解得(2)不等式ax2-(ac+b)x+bc<0,即x2-(2+c)x+2c<0,即(x-2)(x-c)<0.当c>2时,不等式(x-2)(x-c)<0的解集为{x|22时,不等式ax2-(ac+b)x+bc<0的解集为{x|20,b>0),当且仅当a=b时,等号成立;(2)a2+b2≥2ab,ab≤2(a,b∈R),当且仅当a=b时,等号成立;(3)+≥2(a,b同号且均不为零),当且仅当a=b时,等号成立;(4)a+≥2(a>0),当且仅当a=1时,等号成立;a+≤-2(a<0),当且仅当a=-1时,等号成立.[典例](1)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6(2)若正数x,y满足4x2+9y2+3xy=30,则xy的最大值是()A.B.C.2D.[解析](1)由x+3y=5xy可得+=1,∴3x+4y=(3x+4y)=+++≥+=5,∴3x+4y的最小值是5.(2)由x>0,y>0,得4x2+9y2+3xy≥2×(2x)×(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴...