学生成绩评价及预测模型摘要学生学业成绩的分析和评价,是教学工作的重要环节,也是学校常规管理的重要内容。科学地分析评价学生的学业成绩,不仅可以使教师准确掌握学生的学习状况,还可以使学生了解到自己的学习情况,也能为教学管理、改进教学提供必要的依据分析。为了全面、客观、合理地评价学生的学习状况,本文通过在对基础数据进行统计分析的基础上,采用聚类分析中的k-均值聚类分析法对612名学生的成绩进行分类评价,建立了成绩评价模型。首先,根据统计学知识,通过对附表所给的数据进行统计和整理,对612名学生的整体成绩情况进行了详细分析说明。同时运用Excel软件画出学生成绩波动图、成绩等级饼状分布图等,并对各图进行了相关分析和说明,最终得出学生总体成绩分布属于负偏态分布,绝大多数学生成绩分布在60-90分之间的结论。最后还运用非参数检验方法Kolmogorov-Smirnov检验、Shapiro-Wilk检验以及图示检验法(直方图、标准Q-Q图以及箱式检验图)对结论进行检验,使用SPSS软件进行绘图与计算,最终验证了学生成绩分布为非正态分布,且为负偏态分布的结论是正确的。然后在数据分析的基础上上建立了基于快速聚类(k-均值聚类)分析的成绩评价模型。在确定分类数为5类后,利用SPSS进行快速聚类分析计算,结果显示其聚类中心均值依次为:、、、、,各类人数分别为231、286、84、8、3,分类结果科学合理。为了对612名学生后两个学期的学习情况进行预测,本文采用灰色预测理论中基于时间序列的GM(1,1)—阶一元微分方程模型建立了成绩预测模型,为了保证建模方法的可行性,先对数据列进行了必要的检验处理,并且通过残差检验和级比偏差值检验两种方法对灰色预测GM(1,1)模型进行检验,结果显示模型的预测结果能达到较高的要求。最后利用Matlab编程得出预测函数,计算每个学生第5、6学期的成绩预测值以及前四个学期的拟合成绩,并且运用Kolmogorov-Smirnov检验、Shapiro-Wilk检验以及图示检验法对对第5、6学期成绩预测值的正态性分布进行检验,得出学生成绩的总体分布不服从正态分布,而是负偏态分布,与前四个学期的分析结果相吻合,因此可以判定预测结果是合理可靠的,具有较高的可信度。本文还就学生的学习状况,对学校管理部门提出相关的建议。最后讨论了GM(1,1)模型的推广问题,通过添加平衡因子改进模型级比数列的计算方法,以及添加上限条件修改输出函数的方法改进了模型,使得模型具有更强的适应性和更广的适用范围。关键字:成绩预测描述统计k-均值聚类分析灰色预测GM(1,1)负偏态分布1.问题重述评价学生学习状况的目的是激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步。然而,现行的评价方式单纯的根据“绝对分数”评价学生的学习状况,忽略了基础条件的差异;只对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用。附件给出了612名学生连续四个学期的综合成绩。1.请根据附件数据,对这些学生的整体情况进行分析说明;2•请根据附件数据,建立数学模型,全面、客观、合理的评价这些学生的学习状况;3•试根据你的模型,预测这些学生后两个学期的学习情况。4•根据你的模型分析,试给学校的管理部门写一篇短文,提出对学生学习状况评价的建议和改进方案。2.模型的假设与符号说明2.1模型的假设1.假设每个学期的成绩满分为100分;2.假设每位学生所处的学习考试环境相同;34.假设每位学生的学习能力基本保持不变;5•假设每次考试试卷的难度都是相同的。2.2符号说明.[门表示第i个学生第k个学期的残差表示第i个学生第k个学期的级比偏差(注:其他符号在相关位置再作假设。)3.问题分析3.1背景分析学生成绩评价原则是指对学生成绩评价活动的共同的、理性的认识。它是学生成绩理论与学生成绩评价实践活动的纽带。学生成绩评价理论从科学角度对学生成绩的评价进行研究,通常包括假设、概念、原理和原则等。学生成绩评价实践是评价学生成绩实践中所使用的原则、程序和方法。)表示第i个学生一次累加成绩数列表示第i个学生第k个学期数列级比表示第i个学生第k个学期数列均值表示第i个学生的预测成绩数列表示第i个学生的...