第3讲圆的方程[基础题组练]1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1解析:选A.设圆心为(0,a),则=1,解得a=2,故圆的方程为x2+(y-2)2=1.故选A.2.方程|x|-1=所表示的曲线是()A.一个圆B.两个圆C.半个圆D.两个半圆解析:选D.由题意得即或故原方程表示两个半圆.3.(2020·金华十校联考)已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为()A.3x+y-5=0B.x-2y=0C.x-2y+4=0D.2x+y-3=0解析:选D.直线x-2y+3=0的斜率为,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y+1=-2(x-2),即2x+y-3=0.故选D.4.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是()A.(x+1)2+y2=2B.(x+1)2+y2=8C.(x-1)2+y2=2D.(x-1)2+y2=8解析:选A.直线x-y+1=0与x轴的交点为即(-1,0).根据题意,圆心为(-1,0).因为圆与直线x+y+3=0相切,所以半径为圆心到切线的距离,即r=d==,则圆的方程为(x+1)2+y2=2.故选A.5.圆x2+y2-2x-2y+1=0上的点到直线x-y=2距离的最大值是()A.1+B.2C.1+D.2+2解析:选A.将圆的方程化为(x-1)2+(y-1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d==,故圆上的点到直线x-y=2距离的最大值为d+1=+1,选A.6.(2020·杭州八校联考)圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则+的最小值是()A.2B.C.4D.解析:选D.由圆x2+y2+2x-6y+1=0知其标准方程为(x+1)2+(y-3)2=9,因为圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,所以该直线经过圆心(-1,3),即-a-3b+3=0,所以a+3b=3(a>0,b>0).所以+=(a+3b)=≥=,当且仅当=,即a=b时取等号,故选D.17.圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的取值范围为________.解析:设圆心为C(a,0),由|CA|=|CB|得(a+1)2+12=(a-1)2+32,所以a=2.半径r=|CA|==.故圆C的方程为(x-2)2+y2=10.由题意知(m-2)2+()2<10,解得0